Canopener: Recycling old and new data

Cosmin Basca

Rob H. Warren

Abraham Bernstein

Department for Informatics
University of Zurich
Zurich, Switzerland

{lastname}@ifi.uzh.ch

ABSTRACT

The advent of social markup languages and lightweight pub-
lic data access methods has created an opportunity to share
the social, documentary and system information locked in
most servers as a mashup. Whereas solutions already exists
for creating and managing mashups from network sources,
we propose here a mashup framework whose primary infor-
mation sources are the applications and user files of a server.
This enables us to use server legacy data sources that are
already maintained as part of basic administration to se-
mantically link user documents and accounts using social
web constructs.

Categories and Subject Descriptors

H.4.m [Information Systems|: Miscellaneous

Keywords

Systems Mashups, Social Networks, Distributed Information
Systems

1. INTRODUCTION

With the advent of lightweight mashup technologies, an
increasing number of data sources are combined and exposed
as composite data sources, expanding current web bound-
aries. To date, the focus of the vast majority of mashups
has been to create and expose new data by aggregating exist-
ing external data sources such as web pages or web services.
Content creation is still primarily driven either by large sup-
pliers of semi-public content (such as flickr), or through the
hand coding of information by an end user.

A number of outstanding issues remain with the current
approaches. Firstly, in order to integrate data from various
sources diverse standards for data interchange have to be
employed. This gives rise to a high cost of aggregating and
maintaining the translation formulas, which can lead to a re-
duced number of data sources being supported. Most recent
is the trend towards the automatic generation and exchange
of semantic information by the application themselves, as in
the case of the Drupal Semantic Web module[4].

The demand for such approaches is high as it enables for
the seamless transfer of semi-structured information from
an application to the web. The promise is especially appar-
ent given the large amount of information locked in legacy

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.

databases and applications that were never meant to inter-
act with other systems.

We propose Canopener a mashup architecture that enables
one to expose system and user application information over
the web using RDF E| as the data interchange format. The
information can be either statically or dynamically collected
and is exposed via a SPARQL E| endpoint allowing for ex-
pressive querying of the underlying data and the creation of
enterprise level mashups with tools such as Semantic Web
Pipes [10].

Whereas as in a number of solutions, the mashup is viewed
from the perspective of the visualisation client, which agre-
gates the data from multiple sources. Canopener creates a
semantically integrated mashup from all of the user and ap-
plication information that is available from the server.

In itself Canopener provides an integration endpoint at
which information that should be shared can be added. It
provides a mechanism for the automated discovery of the
information available on a server, an amalgamation of the
information into a server-specific mashup, a mechanism to
schedule the data integration and the monitoring of installed
application so that the data integration mechanisms do not
become stale. It essentially provides a view of the informa-
tion on a server that is cross referenced with the social infor-
mation that can be derived from administrative information.
The Canopener information is a mashup that can be trans-
mitted to other applications as a file from the webserver, a
SPARQL endpoint or through a webservice implementation.

Figure [[]is a representation of the Canopener Mashup. A
small Canopener-specific ontology contains site-specific in-
formation such as server geo-location, historical daily work-
load in percentage and historical power loss informatio
A second container lists other RDF markups of documents,
applications, groups and individuals that are part of the
community (or neighbourghood) of this server. The generic
container is also intended to provide a flexible and easy to
deploy solution to the Sensing the real world principle iden-
tified by Hopper and Rice[8] and to other dynamic data
dissemination problems.

The paper is organized as follows: we begin by elaborat-
ing the rational and methodology of the approach, followed
by the overall architecture of the mashup engine. Three dif-
ferent case studies are presented as well as possible future
research directions given large scale data aggregation. We

"http://www.w3.org/RDF/
*http://www.w3.org/TR/rdf-sparql-query/

3This should technically be a system application, but we
put it here for demonstration purposes.

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/

el O

Figure 1: The Canopener Mashup currently provides
basic system information through its own ontology
container and application, and user data through a
generic container.

then review the previous work in the area and conclude with
future work.
Canopener makes the following contributions:

e It semantically links the information contained on a
server using relationships implied from server admin-
istrative information such as user groups.

e It makes use of the package management subsystem
as means of discovering the presence of integratable
information and ensuring the ongoing maintenance of
the integration recipes.

Canopener is an offshot of the development of the Avalanche
distributed RDF framework, where disparate service meta-
data needed to be distributed in a lightweight fashion. It is
used to advertise availability, policy and resource informa-
tion that is not yet supported by available query protocols
such as SPARQL.

2. APPROACH

Our proposed methodology rests on the observation that
there exists a tendency to reinvent the same structures within
information systems. To this end, we looked at the lowest
element of the software stack: the Operating System (OS),
which provides a number of low-level services to user and
system applications such as identity, group membership and
access control.

Given that in most cases we can separate purely admin-
istrative users and groups from actual people and social
groups, Canopener takes the approach that the server it-
self is a community from which semantic information can be
extracted and shared. Data from the installed applications
can be exported as a single large mashup, according to the
existing server configuration files, while at the same time
being socially linked by both the user accounts and groups.

In a way, this is not unlike the sitemap.xml markup
used by some web sites to publish links to the resources
available. Whereas such an approach is web document cen-
tric, ours is centric to the community of users on a specific
server.

The novelty of this approach lies in the reuse of informa-
tion which is already maintained within the server in order
to determine what information can and should be within
the mashup. Since the administration of the server is al-
ready being done for day-to-day operations, any reuse of its
administrative database is a cost already paid for, not re-
quiring additional effort. Furthermore, it promotes a model
of data sharing that has a lower cost of operation in that
applications that only share a small amount of information
do not need their own mashup.

Most modern operating systems allow for complex Access
Control Lists (ACL), including whether persons unknown
should be allowed to read a document. This already serves to
protect documents that could be published by a web server;
it also protects files that contain user or system information
that could be made public, such as IM accounts name, other
public web server accounts, alternate mailboxes and profile
information.

Similarly, group information can be used to generate mem-
bership information as well as group labels for mashup pub-
lications. Relationships declared through applications such
as Instant Messaging, address books and cryptographic keys
can similarly be exported as friendship constructs within a
social web mashup.

By using Semantic Web technologies one can easily cre-
ate different domain mashups without the need to rede-
fine the interchange and integration format and techniques.
Two components are needed to be manually created: 1) the
mashup domain mapping, and 2) the actual legacy data col-
lection / import plug-in.

This last element is actually a large obstacle: the problem
of extracting information from system and user applications
is with the large variety of applications available. Not only
must a mashup generator be written for each of the applica-
tions, but we must discover whether or not the application
is actually present on the server. Our solution is to link our-
selves to the package manager of the server, which records
what application (and version) is installed and allows us to
determine whether information of interest can be extracted.

This does not completely solve the integration problem, as
there exists an extremely large number of applications. But
the package manager needs to be aware at a certain level of
the information system of the application in order to install,
configure and control it. This presents an opportunity for us
to automate some of the integration and translation func-
tions within the mashup, while using the package manager
database for a list of possible data sources to translate.

Thus, our server-oriented mashup generation approach
permits us to maintain a coherent mashup generation in-
frastructure. Its maintenance and content is guided directly
by the policies already set by both the operating system,
user security settings and whether a particular application
is declared installed by the package manager. Lastly, the ap-
proach presents an opportunity to provide low value sensor
and system data to the web for aggregation use at a negli-
gible cost. If the servers security policy states that anyone
can access the sensors (web-cams, weather stations, temper-
ature monitors, etc...) then they are automatically exported
to the mashup.

2.1 Information privacy considerations

Canopener is meant to support servers that facilitate col-
laborative activities for groups and individuals. As such,

this specialization assumes that there exists a limited amount
of private or very private information within the individ-
ual user account, and that there is a need to communicate
(broadcast) information more effectively. In this scenario,
such as in the case of a software development project on
an intranet, the distribution of the information is a wanted
end-result. At the very basic level files which are visible and
accessible through the web server are considered publish-
able by Canopener. More complex and sensitive information
may or may not be exported according to the decision of
the system administrator. Individual users themselves have
the option of preventing their specific instance of that infor-
mation from being published by using the file system access
control list.

The perspective of Canopener is that of an agent for other
mashups, as such it believes that if it can read a file then
the specific information that it knows to extract from that
file can be exported (if also permitted by the system ad-
ministrator). Some user education may be needed to ensure
proper ACL settings, however file system permissions are
the primary security mechanisms of the server and should
have fail-safe defaults.

3. ARCHITECTURE

To achieve the low-cost information reuse goal of our pro-
posed approach, we strive to embody as much of the cur-
rent system stack (both software and hardware) as possible
within the proposed architecture.

Let us consider the stack of technologies as presented in
Figure

Figure 2: Technology stack

To ensure high flexibility in design, deployment and low
cost we propose a simple yet powerful architecture based
mainly on the current technologies that enable the Web.
Most of the information produced by current Information
Systems (IS), is either trapped inside the IS applications or
exposed using highly customized systems meant for hetero-
geneous computing environments.

In the case where an enterprise wishes not to deploy an-
other layer of software to link these systems, the knowledge
worker is left with the possibility of linking the systems ser-
vices based on his level of expertise. He then creates what
is essentially an ad-hoc mashup with provided technologies,
including sneaker-net and print-outs, in order to ensure the
flow of information. It is evident that such an approach is
expensive, prone to errors, hard to maintain and difficult to
replicate; not to mention problematic from an IS security
policy perspective.

We propose an architecture that formalizes the process

of information dissemination within the enterprise by min-
imizing the effort of maintenance and interoperability. We
identify the salient components of the process to sustain the
aspect of information flow within the enterprise. The fol-
lowing are points of interest when considering this aspect:

e Information: domain schema, interoperability, com-
position and interchange

e Information system: standardized and secured com-
munication channels at user, system and application
level. Low maintenance cost, distributed database sys-
tem.

Canopener successfully leverages the in-place components
of the Operating System and installed user applications.
This is achieved by means of pluggable components or scripts
that serve a simple role within Canopener, namely to extract
information from application and expose it as RDF markup.
These plug-ins are matched to a specific application version
tracked by the package manager and export the applications
data as needed. A system-level plug-in exports OS user and
group membership data after system maintenance has oc-
curred.

¥
Legacy
Information RDF
Store

Figure 3: Canopener Mashup architecture

Figure [3| describes in detail the architecture and function-
ality implemented by Canopener. We chose to rely on RDF
(Resource Description Framework) as the data interchange
format given it’s flexibility in expressing data as a graph.
Some of the major benefits of RDF are:

e standard, expressive and open
e data interoperability
e schema unbound

Canopener provides information about it’s mode of operation
partially entailed within the Canopener ontology (Figure [4)
while the rest is added as needed to the knowledge base
under the form of domain specific RDFS [or OWL [’ based
vocabularies. The complete ontology currently in use by
Canopener can be downloaded from http://www.ifi.uzh.
ch/ddis/canopener/2010/02/spec#| in various formats.
Since the ontology alone cannot solve the problem entirely
it is important to link a set of domain vocabularies with a

“http://www.w3.org/TR/rdf-schema/
Shttp://www.w3.org/TR/owl-features/

http://www.ifi.uzh.ch/ddis/canopener/2010/02/spec#
http://www.ifi.uzh.ch/ddis/canopener/2010/02/spec#
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/

1| <rdf:RDF

2 xmlns:_5="http://www.w3.org/2002/07/owl#"

sl xmlns: 5» http://purl.org/de/elements/1.1/"

4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
s xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

o[>

7| <raf:Description rdf:abo

“http://delphi.ifi.uzh.ch/ontologies/canopener/spec#percent_load">
"http://delphi.ifi.uzh.ch/ontologies/canopener/spec#Load" />

0 ttp://www.w3.org/2001/XMLSchema#integer" />

10 <rdfs:label xml:lang="en">percent load</rdfs:label>

1 <rdfs:isDefinedBy rd ource="http://delphi.ifi.uzh.ch/ontologies/canopener /spect" />

2 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property" />

1 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty" />

14 <_5:inverseOf rdf:resourc
15 <rdfs:comment>The system load percentage</rdfs:comment>
16 </rdf:Description>

7| <rdf:Description rdf:abo

ttp://delphi.

i.uzh.ch/ontologies/canopener/spec#systemload">

® <rdfs:domain rdf:resou: "http://delphi.ifi.uzh.ch/ontologies/canopener/spec#Site"/>
19 i.ifi.uzh.ch/ontologies/canopener/spec#SystemLoad" />

P <rdfs:label xml:lang="en">system load</rdfs:label>

21 <rdfs:isDefinedBy rdf:resource="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#"/>

2 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property" />

» <rdf:type rdf:resource="http://wwv.w3.org/2002/07/owlfObjectProperty"/>

2 <_5:inverseOf rdf:resource="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#systemload of"/>
2 <rdfs: y load i on for a Site</rdfs:comment>

25 </rdf:Description>

27| <rdf:Description rdf:about="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#hostname">

» <rdfs:domain rdf:resource="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#Site"/>
= <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchemafanyURI"/>

® <rdfs:label xml:lang="en">hostname</rdfs:label>

at <rdfs:isDefinedBy rdf:resource="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#"/>

@ <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property" />

® <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty" />

u <_5:inverseOf rdf:resource="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#hostname_of"/>
s <rdfs:comment>The host name of a Site</rdfs:comment>

@ </rdf:Description>
@ <rdf:Description rdf:about="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#pover_loss">
@ <rdfs:domain rdf:resource="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#Pover" />

@ <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#dateTime" />

“ <rdfs:label xml:lang="en">power loss</rdfs:label>

<rdfs:i source="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#" />

P <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property" />
@ <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty" />

w <_5:inverseOf rdf:resource="http://delphi.ifi.uzh.ch/ontologies/canopener/spec#pover_loss_of"/>
s <rdfs:comment>The power loss event</rdfs:comment>

4 </rdf:Description>

Figure 4: Canopener Mashup ontology snippet (RD-
FXML serialization format)

plug-in or set of plug-ins within Canopener. The plug-ins
role is simple: gather legacy information trapped within the
Operating System and transform it to RDF given a set of
manually created mappings. The actual domain vocabulary
is chosen by the plug-in itself as the Canopener container is
generic. As an example, user and group membership infor-
mation is exported as FOAF markup and document infor-
mation is stored as Dublin Core markup. Such plug-ins can
be implemented in their simplest of forms as collections of
scripts (perl, python, bash, ...) that can get access to Sys-
tems resources and expose them as RDF. We ask the reader
to recollect our previous mention of the knowledge worker
trying to do just this using only the software provided on
his desktop computer. Canopener provides a formal method
to achieve this, by grouping functional blocks together via
means of a plug-in manager component.

3.1 Process and Information flow

Canopener relies heavily on the Operating System’s pack-
age manager. Currently Canopener is implemented as a APT
package on the Debian EI based operating systems such as
Ubuntu, Linux Mint and the like, by being integrated with
the Apt-Get E] package manager. The mashup itself is de-
ployed as a group of two interdependent debian packages.
The advantage of relying on the Operating Systems package
manager (or application installer) is many fold:

e the package manager acts as a the Canopener plug-in
manager

e being already part of the technological stack it pro-
vides a number of features: automatic dependency res-
olution, global deployment (based on the adoption of
the OS), update and version management support

We argue that by using the package manager in the mashup
architecture both system administrators and users have more

Shttp://www.debian.org/
"http://wiki.debian.org/Apt

“http://delphi.ifi.uzh.ch/ontologies/canopener/spec#percent_load of"/:

control over the mashups stability than web service based
mashups. The information sources are local to the server,
do not disappear at the whim of a third party and by virtue
of mature version control, provide a certain guarantee over
the data format of the sources. By contrast, XML or HTML
scraping can fail silently when the data source changes with-
out warning.

Lastly, there exists no ‘data discovery’ problem in this
model as all instances of the applications are located by the
package manager. There is no need to query a search engine
for the data source location; the package manager is aware
of the specific paths of all data files and can communicate
them to the plug-ins as needed.

3.2 Mashing it all up and opening the can

The collected RDF data is imported into an RDF store
also known as a triple store or quad store (if context is sup-
ported). We are using TokyoTyGREIas a process embedded
RDF store which provides a high performance index of the
stored RDF data according to the Hexastore indexing
paradigm while the data is publicly exposed on the Inter-
net using the SPARQL protocol. A sample SPARQL query
issued by Canopener could look like:

QPREFIX canopener:
<http://delphi.ifi.uzh.ch/ontologies/canopener/spec#>
@PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT 7location ?percent_load 7hour

WHERE

{

canopener:ddis_site a canopener:Site
canopener:ddis_site canopener:systemload ?systemload
?systemload canopener:percentload ?percent_load
?systemload canopener:GMTHour 7hour
canopener:ddis_site geo:lat_long 7location

}

It would retrieve geographical location information asso-
ciated with the system load at a given time for a specific
canopener:Site ﬁ since Canopener reports a system load
over a 24 hour time period by using the canopener:GMTHour
predicate.

canopener: c
S ddis_site
P ———

|

canopanarscity
I:‘ canapenerGMTHaur |:|
canopenersystemload

~. ddis_load5
iy

canopenersystemload

" canopener:
_ddis_load]_
LLITLLR

geodat_lang

Figure 5: Sample Canopener RDF data

As can be seen in Figure[5] Canopener exports Linked RDF
data physically distributed on the Web but logically inter-
linked within the same global RDF graph, contributing thus

8 An implementation of the Hexastore / TyGR RDF store
9As defined by the Canopener ontology

http://www.debian.org/
http://wiki.debian.org/Apt

to the enrichment of the mashup space and the Linked Open
Data [2] Semantic Web cloud. This is done by providing
per system low-cost interchangeable information with high
global value as demonstrated by the case studies presented
next.

4. CASE STUDIES

There are several user-cases that motivated this research.
Initially we had for an objective the enriching of existing
documents with the semantics of the social web. However,
we came to realize that it also provided a simple means
of promoting knowledge exchange, the distribution of low
cost public sensor information and the generation of data
for further research. We review here each case in turn, along
with its motivations and benefits.

4.1 Enriching the social web by recycling old
data

The first was the enrichment of collaboration systems and
of the social web to manage the multiple identities and ac-
counts that academics with multiple appointments can have.
FOAF E does provide as a markup that is capable of rec-
onciling multiple accounts for the same individuals.

We wanted to be able to generate this cross account in-
formation automatically and were able to do so by creating
a plug-in that extracts account information from SSH host
and public key-lists. Similarly, friendships and IM account
names are also extracted by plug-ins from the pidgin - libpur-
ple applications. Obviously, a Canopener instance can only
publish a partial graph: not all friendships are associative
and some server accounts will have a limited amount of ap-
plication data to link profiles with.

We note again that privacy and security are already pro-
vided by the OS in the form of file permissions. If the IM
account, host file or documents can be read or accessed by
a plug-in with no special access rights, then the information
is assumed to be public. Should the users file permissions
be restrictive, then the information is not published.

Figure [6] is a limited representation of the available data
within an individual Canopener mashup. This representa-
tion is a high level abstraction of the full mashup which is
available on the web and which is not reproduced here for
space considerations. The friendships are reported using the
Knows construct from the FOAF vocabulary based on both
the users own FOAF reported friendships and the contracts
that can be extracted from the IM configuration files of the
individual users.

Here, we can see that explicit relationships have been re-
ported between Cosmin < Warren and Avi < Reif. Group
membership exist between two research units (seal, ddis) of
the University of Zurich (UZH). Membership to individual
research projects are also available for projects Canopener,
CUMO, TyGR and Muninn. Note that user Warren has ac-
counts in two different servers, both of which serve docu-
ments belonging to him.

This linked data permits the future implementation of
smart retrieval: as the work load and location of the servers
is made known by the mashup, it is possible to select the
server that is the least busy or closets network-wise to fetch a
document from. It also permits the rapid personalization of
complex collaboration applications that can handle multiple

Ohttp://xmlns.com/foaf/spec/

Figure 6: This mashup represents some of the data
features of the exposed data.

content servers and team memberships. Similarly, the for-
mat lends itself well to support expert finding decisions by
leveraging both the personal relationships of the individuals,
his group memberships and his current ongoing projects.

4.2 Promoting knowledge exchange in seman-
tically disconnected environments

This support for the markup of relationships, group mem-
berships, document markups and multiple identities becomes
an interesting repository of information useful to collabora-
tive environments. The Canopener architecture can also be
used within the intranet of an enterprise to promote the
bottom-up dissemination of knowledge.

Most corporation will have a knowledge dissemination
program or a project accounting system. Yet a lot of in-
formation is locked in a departmental or group server, seg-
regated from all other systems. ‘Stovepipe‘ or ‘information
silos’ information barriers such as the ones represented in
Figure[7]are not uncommon in most large organizations with
information unable to cross functional boundaries.

UNKNOWN (:b

SALES d
Sale: Production Legal Marketmg
Server Server Server Server

PRODUCTION Vk_")» MARKETING“

Figure 7: Canopener as an architecture makes it possi-
ble to access data within other functional lines using
basic web standards.

Examples of this include smaller development projects
that do not necessarily have the clout required to efficiently
communicate their goals and objectives to the rest of the or-
ganization. The architecture enables these smaller depart-
ments to disseminate their information in a format easily
integrated by desktop common tools while also leveraging

http://xmlns.com/foaf/spec/

their existing organizational relationships, without requir-
ing additional administrative effort.

While we had servers in mind for the deployment of Canopener,

it is also possible to use the approach using individual work-
stations and laptops. While the machine community be-
comes that of a singleton, the relationships, accounts and

documents remain linked across different computers and hence

still enable collaboration.

4.3 The server as a sensor in a web mashup

The Canopener architecture is also a possible solution to
the “sensing the real world” problem with respect to sharing
opportunistic data by using current standards and technol-
ogy stacks combined together according to the Mashup pat-
tern. This enables us to expose low risk and low local-value
information that is commonly trapped inside of one of the
system applications.

The proposed architecture exposes the server as a sensor
in a Global Sensor Network, by providing cheap local in-
formation such as system load, network traffic, public user
information, and other relevant statistics. Although the ex-
posed data is of low local value, globally it can be of poten-
tial great value as demonstrated by our application usage
scenarios.

Such information can then be aggregated via means of

tools such as SemanticWebPipes and exposed as a geo mashup,

by providing geolP information and power consumption un-
der the form of a global consumption heat map overlaid on
top of a GIS system such as Google or Yahoo Maps, with
the possibility given a scalable data collection system of near
real-time updates. We believe that such low value local in-
formation (usage statistics) collected and aggregated glob-
ally can be of very high value for the research community
in various fields. The mashed up information can also be of
high value to current cloud computing providers by acting
as input to load balancing.

.
UPS Name: VOYF
Host: vk6har.echidna.id.au
UPS Model: Smart-UPS 1500 RM
UPS Temp: 34.2
= Reported Power Failures:
FriJan 15
5 Thu Jan 14

o

A

W B
=y . w

N Solith 3
H Pacific America Indian i Pacific
i cean i cean
PowERED BY Ocean tralia :

Google

Location: Perth, AU
Search nearby - Zoom here

Figure 8: This mashup represents power failures re-
ported by different servers on the web.

These cases are so far fairly localized in terms of the indi-
viduals and amount of data being processed. An application
is the aggregate use of the information for situational aware-
ness: Figure 8] is an example mashup that is supported by
this approach.

We aggregate the information reported by the servers on
their Uninterruptible Power Supply (UPS) and plot the re-
ported power failures on a map. A prototype of this mashup

is currently online |E| with a limited number of nodes. How-
ever as the number of Canopener nodes increases the cov-
erage becomes pervasive and enables the tracking of power
failures worldwide through the recycling and reuse of infor-
mation already being collected.

4.4 Green computing

One of the major concerns today is the environmental
impact of the IT sector, also known as Green computing
or Green IT. The carbon footprint of modern day com-
puters is increasing even-though there is a reported power
per performance drop (Kw / MIPS). Some of the major
power consumers in modern day desktop or laptop’s are the
GPU (Graphical Processing Units) which increase their per-
formance according to Moore’s Law. However, the power
consumption itself is not dropping and there is a growing
concern regarding the environmental impact of the IT in-
frastructure by both industrial and academic communities
[5]. This concern has materialized in recent years under the
name of Green Computing and it’s main goal is to assess and
reduce the impact the IT sector has on the environment on
a global scale.

Hopper and Rice [§] have identified a number of Green
Computing principles:

e Optimizing the digital infrastructure

e Sensing and optimizing the world

e Predictions on and reacting to a ‘world’ model
e Digital alternatives to physical alternatives

Measures are been taken by computing equipment manu-
facturers to reduce the negative impact computing has today
on the World: environmental friendlier machines, renewable
energy sources, data center placement near renewable en-
ergy or natural cooling locations, recyclable materials and
advanced power management. Still the second principle is
largely unmet at a global scale: we still do not know what is
the power or usage profile of the current global computing
infrastructure.

Canopener provides a platform for collecting important
global usage statistics of servers world-wide by exposing such
information via read-only SPARQL endpoints. As such, it
is a first step in meeting items 2 and 3 of the principles
proposed by Hopper and Rice.

We propose one Canopener usage scenario, that collects
and exposes power consumption and usage statistics. The
major benefit of using RDF as the data interchange format
is the ability of mashup creators to use such information in a
flexible and easy manner in conjunction with other Semantic
Web data sources such as the Linked Open Data cloud |[3].

As is, basic daily workload and hardware reporting is in-
cluded as part of the Canopener ontology. This essentially
provides basic reporting as to the computing capacity and
its daily routine utilization. This taken together with any
on-board sensor for temperature gives a gross profile of the
actual power being used by the server and the amount of en-
ergy in use to cool it. On a global worldwide basis, the utility
of such an aggregate ‘computing-weather-report’ could serve
as a serious analysis tool for the goal of Green Computing.

"http://www.dbdump.org/news/2010/01/
tracking-power-failures-using-ups-status-pages.
html

http://www.dbdump.org/news/2010/01/tracking-power-failures-using-ups-status-pages.html
http://www.dbdump.org/news/2010/01/tracking-power-failures-using-ups-status-pages.html
http://www.dbdump.org/news/2010/01/tracking-power-failures-using-ups-status-pages.html

skyboo.net
Name: skyboo.net
Temperature: 27

| Location: Zebrzydowice, PL

- Zoom here - Save to My Maps

napyce

......

‘‘‘‘‘

Figure 9: This mashup represents the ambient tem-
peratures reported by different servers on the web.

Figure [0 is a mashup of the different temperatures of
servers over central Europe in late January 2010. (The
mashup is available on the web at It represents the type
of information that can be extracted using the Canopener
mashup on a larger scale, with each server becoming a pub-
lic sensor of the global electrical load as a byproduct of per-
forming its primary computing function.

S. PREVIOUS WORK

Most work has been done on mashup architecture, includ-
ing specialized mashups for sensor networks [6]. Most re-
cently there has been a move to micro-mashups for widget-
side processing with the Mashlight [7] system. Similarly,
attempts at improving security in multi-provider situations
have been looked at within specialized environments such as
the MashupOS|9] system. This is prompted by the increase
in the generation of mashups for data exchange by the ap-
plications themselves, such as with the Drupal semantic web
module [4].

The vast majority of data mashups today focus mainly on

the following types of data sources: Web pages, XML/RSS/Atom

feeds, SOAP/REST web services. The approach taken by
Microsoft Popfly E and Marmite [14] focus mainly in es-
tablishing data flows from a collection of input sources aug-
mented with web services. A similar approach is taken by
Yahoo Pipes [11] that supports RSS feeds and web services
as the input data sources for further transformation and
customization. A semantic extension of Yahoo Pipes is rep-
resented by Semantic Web Pipes [10], that consider Seman-
tic Web data sources as the input in producing the data
mashup - such as SPARQL endpoints or publicly available
RDF files. There is limited work with respect to mashing
up legacy data sources and exposing them as standardized
web services for other mashup systems present today.

The approach taken here is similar to the original screen-
scraping approach where early mashup tools, would parse
the HTML page of a particular web site to extract the em-
bedded information, but it differs in a number of key aspects.
Firstly the screen scraping mashups suffered mainly from
increased instability since the model they adhere to cannot
present any guarantees with respect to information type and

2http://www.dbdump.org/~warren/publications/heat_
map.kml
Dhttp://en.wikipedia.org/wiki/Microsoft_Popfly

ALl PPWisTole A, Tedamvbom « 16 13 se [

layout stability. Web pages are subject to change according
to the respective publishers agendas and are not regulated
by a central authority as is the case of the package man-
ager. The package manager enforces a level of stability via
means of hard dependency resolution and long term major
update cycle - as is the case for Ubuntu Linux which has a 6
months release cycle and long term support editions (LTS)
have an even longer term cycle of release typically above 1
year. This facts guarantee that the application and system
services targeted for information extraction change in a con-
trolled manner and with a lower frequency than unregulated
data sources on the web. Furthermore the package manager
provides explicit version information so that the Canopener
plug-in developer can actively choose to support or not cer-
tain versions of those particular services. Secondly screen
scraping approaches employ a data discovery step that usu-
ally involves entities such as search engines or web directo-
ries to find the required information with a certain degree
of uncertainty. This is not the case for Canopener since the
package manager is a centralized location for application
search and selection which is available globally across the
OS distribution.

Extensive work on enterprise mashups has been conducted
within the Damia [1] mashup platform considering the in-
tranet as the deployment space of the mashup. Damia pro-
vides support for the so called situational applications - ap-
plications created by enterprise business users as a means
of solving day-to-day problems. Although Damia employs a
similar high level architecture as Canopener, it relies heav-
ily on standard data interchange formats such as JSON
and XML (RSS, ATOM) while Canopener is built on top
of RDF for increased flexibility. The Damia Feed Server al-
lows querying for information given a customized set based
feed oriented protocol, as opposed to Canopener which ex-
poses standard SPARQL query capabilities allowing expres-
sive querying, while optimization is delegated towards the
SPARQL processor level. Damia provides direct support
for data sources composition, while this is not addressed
in Canopener which concentrates instead on managing the
availability of the data. At the same time Canopener has a
lighter footprint with very few external dependencies, which
lowers the cost of operations and installation.

6. CONCLUSION

In this paper we purpose a novel architecture that reused
existing social and application information within servers to
semantically augment the information being published. We
do so in a manner that is low cost in that the existing ad-
ministrative, policy and configuration interfaces are used to
determine what content can and should be published. In
this manner, we are able to promote the sharing of informa-
tion previously locked within legacy applications while also
supporting the opportunistic publication of publically useful
data such as power and sensor information.

In future work, we will augment the relationship element
of the FOAF markup using the FOAF relationship mod-
ulﬂ we are currently researching means to probabilisti-
cally assigning relationship types between users within the
same server using an aggregate of the social information
within the user account. Canopener has been targeted to

“http://www.perceive.net/schemas/20021119/
relationship/

http://www.dbdump.org/~warren/publications/heat_map.kml
http://www.dbdump.org/~warren/publications/heat_map.kml
http://en.wikipedia.org/wiki/Microsoft_Popfly
http://www.perceive.net/schemas/20021119/relationship/
http://www.perceive.net/schemas/20021119/relationship/

the Debian Linux distribution and we are currently looking
at porting it to other distributions and operating systems.

7.
1]

[10]

[13]

[14]

REFERENCES

M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie,
V. Markl, L. Mau, Y. H. Ng, D. Simmen, and

A. Singh. Damia: a data mashup fabric for intranet
applications. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases,
pages 1370-1373. VLDB Endowment, 2007.

C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. International Journal on Semantic
Web and Information Systems (IJSWIS), 2009.

C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1-22, 2009.

S. Corlosquet, R. Delbru, T. Clark, A. Polleres, and
S. Decker. Produce and consume linked data with
drupal! The Semantic Web - ISWC 2009, pages
763-778, 2009.

M. Garrett. Powering down. Commun. ACM,
51(9):42—-46, 2008.

D. Guinard and V. Trifa. Towards the web of things:
Web mashups for embedded devices. In Workshop on
Mashups, Enterprise Mashups and Lightweight
Composition on the Web (MEM 2009), in proceedings
of WWW (International World Wide Web
Conferences), Madrid, Spain, Apr. 2009.

S. Guinea, L. Baresi, M. Albinola, and M. Carcano.
Mashlight: a lightweight mashup framework for
everyone. In 2nd Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web
(MEM 2009), 2009.

A. Hopper and A. Rice. Computing for the future of
the planet. In Philos Transact A Math Phys Eng Sci,
volume 366, pages 3685-3697, 2008.

J. Howell, C. Jackson, H. J. Wang, and X. Fan.
Mashupos: operating system abstractions for client
mashups. In HOTOS’07: Proceedings of the 11th
USENIX workshop on Hot topics in operating systems,
pages 1-7, Berkeley, CA, USA, 2007. USENIX
Association.

D. Le-Phuoc, A. Polleres, M. Hauswirth,

G. Tummarello, and C. Morbidoni. Rapid prototyping
of semantic mash-ups through semantic web pipes. In
WWW ’09: Proceedings of the 18th international
conference on World wide web, pages 581-590, New
York, NY, USA, 2009. ACM.

T. Loton. Working with Yahoo! Pipes, No
Programming Required. Lotontech Limited, February
2008.

U. Schonfeld and N. Shivakumar. Sitemaps: above
and beyond the crawl of duty. In J. Quemada,

G. Ledn, Y. S. Maarek, and W. Nejdl, editors, WWW,
pages 991-1000. ACM, 2009.

C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.
Proc. VLDB Endow., 1(1):1008-1019, 2008.

J. Wong and J. I. Hong. Making mashups with
marmite: towards end-user programming for the web.
In CHI ’07: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages
1435-1444, New York, NY, USA, 2007. ACM.

	Introduction
	Approach
	Information privacy considerations

	Architecture
	Process and Information flow
	Mashing it all up and opening the can

	Case studies
	Enriching the social web by recycling old data
	Promoting knowledge exchange in semantically disconnected environments
	The server as a sensor in a web mashup
	Green computing

	Previous Work
	Conclusion
	REFERENCES -9pt

