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Problem Statement: Network destabilization
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data was lumped in the same analysis and a conclusion derived.

Our hypothesis is that since the world is a dynamic system,

Link Prediction

Abstract

A interesting problem in Social Network Analysis (SNA) is the resilience to interference and how information flows from one
person to another. In the past, we have always approached these problems from a static or 'snapshot' perspective: all available

the analysis should either be dynamic itself or at a minimum,

conclusions based on static SNA metrics should be revisited. We test our assumptions on Gnu Privacy Guard key trust databases,
discuss examples where the static assumption is counter-productive and suggest possible alternatives.

Rank Stability

Social Network Analysis (SNA) is used as a means of analyzing people and
the relationships that bind them [1]. In several situations, researchers are
interested in the flow of information within the network and in the absolute

influence yielded by each node.

Another application of SNA is the analysis of the network in order to achieve
its destabilization or identify weaknesses within its structure. This has direct
applications in communications networks and more recently in international

security [2].

Figure 1 — A sample graph from the Debian dataset.

The two approaches to this type of problem are the removal of either vertices

(Figure 2) or edges (Figure 3) to try and isolate the elements within the
graph and increase the distance between the nodes still connected to the
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Because locating highly connected vertices is computationally faster than '@ @ '@ @
selecting critical edges, many researchers prefer removing or isolating nodes

rather than trying to section the graph. @ @

In our research, we evaluate the effectiveness of node removal in

destabilizing very large graphs of real-world data and determine if the

assumption of a static graph is reasonable in such situations.

pproach assumptions anc

limitations

Traditional, 'classical' Social Network Analysis is based on a number of
assumptions:

* That the nodes within the system and the edges that bind them are
static and unchanging.

* Because the system is static, the nodes are unaware of modifications
made to their environment and do not react to them.

* There is no growth, optimization or expansion of the edges within
the graph. Whatever information may flow from one node to another
through the graph does not trigger the creation of new edges between
the nodes.

* All nodes are present at all times within the network and are always
available.

* All nodes and edges have the same cost of removal or isolation.

Our concern is that the assumptions are skewing research results in
that the current methods do not take into account the future changes
in the system. Hence, it is very possible that by the time that action is
taken, the situation will have changed and the desired results will not
have been achieved.

Hence, we look at two social networks extracted from public key
cryptography databases and test some of the assumptions.

Specifically:
1. The graphs are analyzed from a temporal perspective.
2. The link prediction problem is revisited within the datasets.

3. The rank stability of the nodes deemed as most important within
the static data is reviewed within the dynamic data set.

4. The effects on the graph of removing the most connected nodes are
revisited in a large dataset setting.

Figure 2 — The sample graph with a major nodes Figure 3 — The sample graph partitioned by cutting
isolated. several edges.

Real-World datasets

As a means of testing our dataset we obtained two databases of public
key cryptography keys from the Debian software project and the
University of Alberta public key server. Both these databases contain
detailed timestamps information and we make an explicit assumption
that any trust relationship between cryptography keys implies a
relationship, or an edge.

Since the datasets deal with keys and signatures, we preprocessed the
datasets to record link multiple keys into single individuals and sets of
signatures into relationships. Because expiry information on many
keys is missing, we make another explicit assumption that a key is
only valid for a year after the date of last activity.
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Figure 4 — Number of individuals and relationships
active within the network in 1 month intervals for the
Debian dataset.
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Figure 5 — Average social distance and connectivity
in 1 month intervals for the Debian dataset..

The first dataset is the keyring of the Debian software project, which
is manually curated. The keyring has about 1,500 individuals and
15,900 relationships within it. Figures 4 and 5 represents the
evolution of the active individuals within the network. Note the
sudden surge in relationships post-1999, that coincides with the first
large Debian conferences.
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Figure 6 — Number of individuals and relationships
active within the network in 1 month intervals for the
Alberta dataset.
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Figure 7 — Average social distance and connectivity
in 1 month intervals for the Alberta dataset..

The second dataset comes from the University of Alberta public key
server which is collated by 'gossip' engines. The dataset size is quite
large, with over 1,450,000 individuals and a little less than 500,000
relationships. The dataset is interesting in that it gives us a
representation of how a very large system behaves, since most SNA
datasets tend to be very small and curated.

Figures 6 and 7 represent the population and relationship plots for the
dataset over time, as well as the average distance and connectivity
between the individuals in the database. Note how the social distance
seems to stabilize over time.

Intuitively, we accept that at some point we will come to know the friends of our
friends. As such, another aspect of the problem is how to take into account the
growth that is normal to any social network. Liben-Nowell et al. [3] previously
looked at the problem and determined that there existed a relationship between
the lengths of the paths linking two nodes and their likelihood of generating an
edge.

We attempted a similar experiment with our dataset, by finding the shortest path
that linked two nodes before an edge linking the two appeared. The results of
Figures 8 and 9 are consistent with the results of Liben-Nowell in that nodes with
a shorter indirect path tend to create direct edges. We also show the number of
nodes with known indirect paths that did not create edges. The normalization of
both graphs is not sufficient to build an accurate prediction model. However, we
do conclude that this implies that the neighborhood around highly connected
nodes has a tendency to naturally grow edges bypassing the highly connected
node.
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Figure 8 — Number of node that created or did not
create a direct edge versus the length of the indirect
path for Debian dataset.

Number of occurrences

Number of occurrences

Figure 9 — Number of node that created or did not
create a direct edge versus the length of the indirect
path for the Alberta dataset.

Localized small worlds

An experimental observation is the existence of very interconnected small worlds
that revolve around nodes with large number of edges. Figure 10 is a partial
representation of the neighbors of node 893555 that is typical of highly
interconnected nodes.

What makes this interesting is that the neighbors of
node 893555 have a high number of edges within
and outside the neighborhood. In effect, the 'super
node' is surrounded by a ring of very connected
nodes: the average number of edges for a direct
neighbor of node 893555 in July of 2001 is 13.1
edges. This is a sharp contrast to the overall average
of 4.3 edges per node for the graph.

Hence, any attempt to remove the 'super node'
(Figure 11) does not necessarily destabilize the
graph: (1) the neighborhood is acting as a highly
integrated small world and (2) the link prediction
problem suggests that any break has a higher
probability of being overcome.

Figure 10 — Partial representation of the neighbor
node 893555.

A possible solution we have been experimenting with, has been the random
removal of nodes with only two edges (Figure 12). These gateway nodes are
usually part of a path longer that 2 edges that is less likely to be rebuilt and
which effectively reduces the connectivity of the graph.
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Figure 11 — Node 893555 is isolated. Connectivity is Figure 12 — Nodes 165293, 966838, 966855 and
0.86. 190488 are isolated. Connectivity is 0.55.

A final concern was the rank stability of highly connected nodes
within dynamic graph. Many SNA researchers will assume that the
dominant nodes will remain so for the whole time period.

We set out to verify the stability of this assumption by calculating the
list of the top 10 most connected node within each data set and then
tracking their instantaneous rank over time.
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Figure 14 — Changes in overall rank for each one
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igure 13 ~ Changes in overall rank for each one month period in the Alberta dataset.

month period in the Debian dataset.

The data series in Figures 13 and 14 represent the changes in rank of
each of the top 10 connected nodes in the datasets. Rank 11 is used to
indicate any other rank than 1 to 10. Looking at both graphs, we
conclude that the actual impact and participation of the nodes varies
greatly with the time period under study.

Hence any attempt at destabilizing the network should take into
account the transient nature of 'super-nodes' within social networks.
Too much stale data may skew our conclusion towards a solution that
attempts to solve an obsolete problem.

Conclusions and future work

In this poster we reviewed some of the common underlying
assumptions about Social Network Analysis, with a special emphasis
on the dynamic nature of the system.

We know that people and their relationships are in constant flux, with
new relationships being formed and others expiring. As such, which
nodes and edges should be influenced must depend on timely
information instead of an overall gross average.

The process of growth is one that we have identified as important, as
it provides insight into how the graph might appear. How the nodes
will react to changes forced upon them is a difficult problem that we
have not addressed, but one which we feel needs further study.

Finally, the assumption that the removal of a few key nodes will result
in the destabilization of a network is one that needs to be revisited.
Because of the localized density where highly connected nodes are
located, new strategies must be devised that do not rely on attacking
strongly integrated nodes. Possibly, the selection of a number of a
weaker nodes may be an effective solution.
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