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Abstract

Social networks are the focus of a large body
of research. A number of popular email en-
cryption tools make use of online directories
to store public key information. These can
be used to build a social network of peo-
ple connected by email relationships. Since
these directories contain creation and expira-
tion time-stamps, the corresponding network
can be built and analyzed dynamically. At
any given point, a snapshot of the current
state of the model can be observed and tradi-
tional metrics evaluated and compared with
the state of the model at other times.

We show that, with this described data
set, simple traditional predictive measures do
vary with time. Moreover, singular events
pertinent to the participants in the social
network (such as conferences) can be corre-
lated with or implied by significant changes
in these measures. This provides evidence
that the dynamic behaviour of social net-
works should not be ignored, either when
analysing a real model or attempting to gen-
erate a synthetic model.

1. Introduction

One of the elements of public key cryptography sys-
tems such as Pretty Good Privacy™ and GNU Pri-
vacy Guard is the need to guarantee the validity and
authenticity of public keys. As a solution, key servers
dispense key trust information uploaded by key owners
in the form of keys signatures. The trust information
is inserted into the system based on each users belief
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that the key that they are signing is the one belong-
ing to the intended user. These key servers are a sig-
nificant source of historical information as the public
keys contain both identity and trust relationships. The
common practice of limiting the lifetime of keys and
signatures based on calendar time ensures that stale
information can be identified. This allows us to view
sets of key-rings within key servers as social networks.

Using the time-stamped data it is possible to trace
the entry and departure of persons within the systems
as well as the relationships connecting them. At each
time stamp it is possible to compute a number of met-
rics and statistics on the new relationship or on the
social network graph as a whole at that point in time.

We show that these metrics change over the lifetime
of the network and that some of the more distinct
changes are highly correlated with events relevant to
the actors in the network. There was, for example, a
distinct increase in the average previous-shortest dis-
tance between two newly-connected actors in a Debian
mailing list immediately after a Linux conference.

This implies that static metrics are insufficient for
analysing and describing the behaviour in this net-
work, and provides general evidence that care must be
taken when using only static metrics in analysing other
such networks. Such metrics should be recomputed
continuously and the temporal differences accounted
for. Additionally, these results could be of benefit in
modelling “realistic” synthetic social networks.

Further, we demonstrate that this network could, at
any given timestep, consist of many disconnected com-
ponents, on the order of the number of nodes in the
network. This indicates that care should be taken
when using algorithms or techniques which require the
assumption that the network is connected, especially
since in a dynamically built network components could
easily be merging and splitting over time.
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The remainder of the paper is organised as follows.
We start with a brief summary of graphs and social
networks as well as a review of PGP™. Then, we de-
scribe in detail the two data sets that we focus on, one
relatively small (extracted from the Debian developers
key server) and one much larger (extracted from the
U Alberta key server), as well as report some basic
statistics on them. Dynamic networks were built up
from those data sets so we next describe and report
the various metrics and statistics measured through-
out the life of these network graphs.

2. Background
2.1. Graphs and Social Networks

Graph theory is an old and well-studied field with a
plethora of concepts and algorithms. For an introduc-
tion to graphs and graph algorithms see, for example,
(Wilson, 1986).

Formally, a graph is a pair G = {V, E} where V is a
set of nodes and F is a set of edges which in turn are
pairs of nodes (i.e. £ ={e = (h,t): h €V andt €
V}). Two edges are said to be joined if they share
the same node between them (i.e. e; = (n1,n2),e; =
(n2,n3)). A path between two nodes is a collection
of consecutively joined edges that connect those two
nodes. There are a variety of well known algorithms
for determining the shortest path from one node to
another. Finally, a connected component is a subset of
a graph where every pair of nodes in that subset are
connected by some path. If a graph is composed of
only one connected component then the graph is said
to be fully connected.

The idea of social networks is simple—to model social
and sociological data using graphs. The idea proba-
bly first arose in the field of sociometry as a way of
quantifying social relationships.

Interest in social networks has been around since at
least the 1950’s. Modelling collections of social actors
as nodes in a graph and their relationships as edges
provides a paradigm that has since been utilised in
a variety of different areas, from studying the neural
pathways of bacteria to analysing power grids(Watts
& Strogatz, 1998). In 1967 Milgram (Milgram, 1967)
formalised the “small world” property that seems to be
present in many social networks. Given any two nodes
in a small world, it is highly probable that those nodes
are connected by a relatively short path. More re-
cently, Watts’ book(Watts, 1999) on the small worlds
phenomenon seems to have sparked even more research
in the area.

Initially, interest in social networks and small worlds
was primarily focused on using the graph paradigm to
model and analyse data. More recently, researchers
have started looking at various methods of generating
synthetic social networks on which a variety of algo-
rithms can be tested. Typically, social networks that
have the small world property are desired.

Interest in this small worlds property has translated
into interest in a variety of different methods for eval-
uating a new relationship. Just before an edge is added
to the network, the shortest path between the two
nodes associated with an edge can be recorded. Pre-
sumably, if this previous shortest path is, on average,
very low then the network will have the small worlds
property (see for example (Kleinberg, 2000)). This
leads to a useful tool in analysing social networks, as
this metric is often easy to measure. Indeed there are
a host of different measures that are associated with
such new relationships, all of which are based in some
way or another on the concept of measuring the path
or paths that exist between two nodes before an edge
relating them is added (see for example (Hannerman,
2001) for a summary of some of these measures).

These measures have proven useful for generation of
synthetic social networks as well. Since these measures
apply for any two nodes not yet joined by an edge they
can be computed for all such pairs, then translated in
a straightforward manner into probabilities yielding
an obvious method for building a graph. By forcing
these measures to be low, graphs with the small world
property can be generated.

One thing to note is that some of these measures, as
well as other social network algorithms, may require
that the network be connected, either to guarantee a
performance bound or, in some cases, to work at all.

2.2. PGP™

Pretty Good Privacy (PGP™) and variants (such as
GNU Privacy Guard) are programs for encrypting and
signing e-mail. They can be used to encrypt entire
e-mail messages but more often are used to sign an
e-mail as a way of guaranteeing that the e-mail is ac-
tually a product of the person who signed it.

PGP™ uses the RSA (Rivest Shamir Adleman) pub-
lic and private key crypto-system. Public key methods
work by generating separate encryption (public) and
decryption (private) keys in such a way that decryp-
tion of a message with the public key is nearly impos-
sible. This allows mass distribution of the public key
without concern. Anyone can encrypt messages but
only someone with the private key can decrypt them.
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PGP™ can also be used to apply a digital signature to
a message without encrypting it. This is normally used
in public postings to allow others to confirm that the
message actually came from a particular person. Once
a digital signature is created, it is almost impossible for
anyone to modify either the message or the signature
without the modification being detected by PGPTM.

In order to verify the signature of an e-mail, the public
key is needed. Without key servers, people would have
to distribute and find these keys themselves. To facili-
tate this process, key servers store the (public) PGP™
keys and key certificates. Anyone looking for a public
PGPT™ ¥key can search for and retrieve it from the key
servers (The key servers synchronise with each other—
if someone adds a key to a key server it is distributed
to all key servers).

Initially, a person must actively “sign” the key of an-
other person (indicating that they trust that that key
belongs to that person). However, once a person has
signed someone’s key, that key now becomes trusted
by the first person. In this way it is possible to verify
the validity of a particular key. A key is only trusted
if it is signed.

These chains of signatures build up like a web, called
the web of trust. This web-like structure is no acci-
dent. It is important to have as many disjoint paths
as possible to reduce the chance that someone can fake
a confirmation chain with a wrong signature.

Everyone who uses PGP™ (or its variants) has a key-
ring of (mostly) valid public keys. Additionally, a trust
value can be assigned to each public key indicating
how much a person believes in the authenticity of the
key. The validity of a key is can be determined by
thresholding this trust value. Almost all of this data
can be mined from public key servers.

3. The Data

GPG and PGP™ key networks have a number of el-
ements that make them interesting data sources for
our purposes; several key analyses have been done in
the past on trust relationships within key-rings with
an eye at establishing the authenticity of keys and the
reliability of the key signing process (e.g., (Blaze et al.,
1996)). We pursue here a different approach in that
we are not interested in the keys themselves as much
as the relationships which they imply between the in-
dividuals within the key-ring universe.

The distinction is important in that different individ-
uals may have multiple keys for multiple roles which
have not been linked for historical or operational rea-

sons. Hence, while historically the social distance
within a group of individuals was calculated with re-
spect to key signatures with authenticity as an objec-
tive, we only which to establish a reasonable expecta-
tion that a relationship does exist. We make an im-
plicit assumption that the process used by people to
determine key trust is directly linked to the strength
of the relationship between the two people and not on
a particular relationship between two specific keys.

The keys contain a free form identifier string that is
set by the key owner. By a loose convention, this
is usually composed of the email address (”John Doe
<johndoe@somewhere.com>") of the key owner along
with a brief longhand description (”Work place soft-
ware distribution key”).

The keys were then pre-processed to resolve individ-
uals to their public keys, even if an owner-to-owner
signature between them was missing. To do this the
email labelling data was used using an m-to-n merge:
keys having multiple email addresses where matched
with keys labelled with those same email addresses.
This ensured that we could obtain an unique identifier
for each person within the database.

Signatures between keys were assumed to indicate a
friendship between individuals. This assumption can
be challenged in that key signatures are granted on an
opportunistic basis that may not be completely based
on friendship, as much as social access. This may ex-
plain with some individuals in key networks have a
disproportionate ’friend’ network that is not recipro-
cated. While a metric for the level of trust accorded
to each key was available, we choose not to make use
of it in this research.

Using the time-stamps we then tracked the evolution
of the social network from the addition of the first node
to the end of the data collection period. There are four
possible changes that can occur in the network:

1. Node (person) addition (key creation)
2. Node (person) removal (key expiry/revocation)
3. Edge (relationship) addition (signature creation)

4. Edge (relationship) removal (signature expiry, sig-
nature revocation)

We thus labelled the identifying and friendship data
with time-stamps. This was done to prevent stale so-
cial information from flooding our analysis network.
Individuals and relationships were temporally removed
from the dataset where their underlying keys and sig-
natures where cryptographically revoked or expired.
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Because in the vast majority of cases no expiration
date had been set for the keys, we applied a timeout
period of one year after the last sign of activity (key
creation or signing) from the user.

We extracted data from the following two key servers
and created social network databases from them. The
key rings were::

The Debian key-ring: The developers key-ring for the
Debian distribution project was used as a small
data set, using data captured as of July 5th, 2004.
The key-ring as used by the GPG engine is about
10MB large.

The U Alberta key server key-ring: The key-ring of
the U Alberta key server was used as a large data
set, using data captured as of May 27th, 2005.
The key-ring as used by the GPG engine is about
4GB large.

The Debian key-ring has about 1465 unique individ-
uals within it, on average an individual has 1.6 keys.
The U Alberta key server key-ring has about 830,000
unique individuals in it, each with an average of 2.38
keys. We hypothesise that this increase over the De-
bian data set is a result of the longitude of the key
server data set. Within the Debian key-ring, there are
about 17,912 keys which sign Debian maintainer’s keys
but are not part of the key-ring.

Furthermore, the email address enabled us to perform
linking to other data sources. In the case of the De-
bian server, we were able to link the debian-devel and
debian-project mailing list used by debian developers
and extracted the social network information from it
for comparison to the GPG key network. We match-
ing email addresses to the individuals already linked
to the GPG network and added new entries for people
that were not.

4. General Network Properties

Figure 1 shows the growth of the number of individuals
(nodes) and relationships (edges) in the social network
incrementally built up using the Debian key-ring data.

Figure 2 shows the same growth for the social network
created from the U Alberta key server data. We found
that the large world of the U Alberta key server key-
ring behaves in a manner similar to the bow-tie struc-
ture observed with the world wide web (Broder et al.,
2000). This bow-tie is composed of a core “knot” of
relationships in the middle. This core is referred to by
a large number of persons that are not in turn referred
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Figure 1. Population and relationships within the Debian
key-ring over time.
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Figure 2. Population and relationships within the U Al-
berta key server over time.

to (the left part of the bow-tie). The core also refers
to a large number of people who do not refer back to
the core (the right part of the bow-tie). Finally, there
are a large number of “smaller worlds” unconnected to
the rest of the key-ring (the lint).

A measure of the overall connectivity was computed
for both data sets over time by picking a random indi-
vidual and attempting to find a path to another ran-
dom individual within the data set. By computing the
number of successful paths computed for each pair, the
overall connectivity for each key set was tracked.

Interestingly, as the size of the world grows, the ac-
tual social distance between people increases with the
number of people within the key-ring. The connectiv-
ity of the system within the key-ring was measured by
tracking the number of times a path could be found
from point A to point B. overall the connectivity of
the graph begins at 25% and drops to 3% when all
individuals are within the world.
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The Debian key-ring has a well-curated database and
it’s interconnectivity tends to converge to about .33
(i.e., about 1/3 of the time, a path can be found to
another individual within the key server). In contrast,
the overall connectivity of the U Alberta key server
keeps lowering itself to about .01 with the passing of
time. We hypothesise that this is a direct result of the
intended purpose of both data sets. The Debian key-
ring is cleaned and maintained to support the Debian
development process whereas the U Alberta key server
is used as a database which is not trimmed. Old, ob-
solete or broken keys therefore accumulate and pollute
the key server whereas extra and/or useless informa-
tion is pruned from the Debian key-ring. A large part
of the problem comes from the widespread utilisation
of keys with no expiration information and which re-
main for an excessive amount of time.

Figure 1 shows a comparison of the number of nodes
and the number of connections in the Debian network
over time. Note that the number of connected com-
ponents increases in the same manner as the number
of nodes. This provides evidence that in certain social
networks, the number of connected components con-
tinuously vary over time. In such networks, caution
is required not only when making the assumption that
the underlying graph is connected but even when mak-
ing the assumption that there are a constant number
of connected components.

As previously mentioned, we also made use of two
main debian mailing lists to compare against the GPG
social network. Out of the 17,305 individuals that
posted to the mailing list, only 806 were part of the
GPG social network. There exist many explanations
for this difference, which may include the curation pro-
cess that occurs with the debian keyring and one-time
posts to the mailing list.

5 T T

MII{eyring &
) T list
1 @““aln‘lgls‘ﬁ‘

96 97 98 99 00 01 02 03 04

Figure 3. Comparison of the distance in both mail and
keyring social networks.

Figure 3 compares the average network distances for
both GPG and email data-sets. Interestingly, the
email data-set rapidly converges to an average distance
of slightly less than 3. We found this consistence sur-
prising as we expected a higher amount of one-off post-
ings and individuals within the mailing lists and thus
a higher variation in the metrics. By inspecting the
mailing lists we discovered that a number of the mail-
ing lists contain a number of long running discussions
between 2 or 3 individuals within the mailing lists.
This explains the stability of the average social dis-
tance metric, however we are unsure of the reasons for
the differences in the connectivity metrics between the
GPG and mailing lists net that is plotted in Figure 4.
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Figure 4. Comparison of the connectivity in both mail and
keyring social networks.

By inspecting the graph, it becomes obvious that the
mailing lists lead the GPG key network temporally.
This is what we expected intuitively as posting to a
mailing lists requires less preparation that creating a
GPG key. Furthermore, the peak in mailing list con-
nectivity also coincides with a number of Debian and
Linux conferences already mentions. We thus propose
that the GPG network is a restricted subset of the
mailing list network that lags behind because of its
formalised structure.

5. Relationship properties

For the Debian data set, the relationships follow a
power law curve; on average each entity within the
key-set would signal a relationship with about 13.8
other people on average.

For the key-ring data set the relationships still follow
a power-law curve but the number of relationships has
decreased to 1.93. We believe that the number of single
individuals accounts for this difference.

There are 15,939 relationships between individuals de-
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clared within the Debian key-ring. Out of these, 5,515
are symmetric in nature in that the relationship is re-
ciprocated by the signee. The rest are one-way key sig-
natures where an individual signs another key without
any acknowledging signature. One possible reason for
this behaviour is the use of automated email key sign-
ing methods. A review of the relationships did not,
however, yield any obvious indicators of this.

These asymmetric relationships are analyzed by Feld
and Elmore (Feld & Elmore, 1982) who suggested that
they are present because of logistical difficulties in in-
teracting with other persons or because individuals
may select individuals which their peers consider pop-
ular but whom they themselves do not know person-
ally. This may have some significance for managing
cryptographic and trust networks, as it indicates that
trust may be asymmetrical.

Within the U Alberta key server data set there are
118,960 distinct relationships declared, of which 69,193
are asymmetric. There are more than twice as many
(2.8 times) directed relationships as there are symmet-
ric relationships. Anecdotal evidence seems to support
the proposal made by Feld and Elmore (Feld & Elmore,
1982) that these specific asymmetric relationships are
the result of social popularity and not actual acquain-
tance or social relationships. The most connected node
within the key server data set is Phillip Zimmerman,
the original author of the PGP™ package. It is in-
teresting that a 33% rule seems to be in effect—about
33% of all the relationships are asymmetric; this ap-
pears to be consistent with the results obtained from
blogging data (MacKinnon & Warren, 2006; Kumar
et al., 2004).

Earlier, we argued that a popular metric for analysing
social networks is the shortest path length between
nodes in the network. Figure 5 demonstrates how the
average shortest path length changes over time in both
data sets.

A typical use for this metric is for predicting which two
nodes will be connected next in the development of
the social network. When a new edge is added we are
interested in the length of the previous shortest path
between those two nodes (obviously after the addition
of the new edge the length of the new shortest path
will be one). If one can build a distribution over such
lengths, it can be used to estimate the probabilities
(for all possible pairs of nodes which are not already
connected) that a particular edge will be added.

Figure 6 shows a kernel density function displaying
over time the average shortest path between two nodes
in the Debian data set before a relationship is added
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Figure 5. Social distance change over time in both data sets

connecting them (the x-axis is time and the y axis is
shortest path between nodes). In other words, at a
time where there is a peak, when a new relationship is
added between two nodes, the average shortest path
between them is longer than when there is a valley.
To put it another way, the peaks correspond to times
when the people (nodes) in the network reach out far-
ther in the graph for new relationships. Note that
because we used a normalized kernel density function
to display this data, the scale of they y-axis has lost
its units. However, this representation clearly demon-
strates the relative differences in the model over time.
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Figure 6. Average shortest paths

Note the large peak in 1999 and the periodic peaks
roughly every year thereafter. We hypothesise that
these peaks are explained by a number of Linux-based
conferences—that contacts made while organising and
attending the conference translated into key signa-
tures. the conferences are as follows:
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e Linux Expo 1995-1999, started 1995-06-26

e Linux World Expo, started 1999-08-09

e Linux Kongress 1994-2004, started 1995-05-01
e Linux Con Au 1999-2004, started 1999-07-09
e Linux Tag 1998-2004, started 1998-05-28

e Ottawa Linux Symposium 1999-2004, started

1999-07-22

The first edition of each conference is plotted in Fig-
ure 6 as a vertical black line. Subsequent editions are
plotted as vertical grey lines. Clearly, the largest peak
corresponds to the first edition of three of the confer-
ences (Linux Con Au, Ottawa Linux Symposium and
Linux World Expo). Also, note that there is a high de-
gree of correlation between the remaining conference
dates and the peaks in the kernel density function.

This has important implications for both analysis and
synthesis of social networks. If we gathered data from
an existing hypothesised social network we could eas-
ily create such a graph of shortest paths over time. If
there were distinct peaks in such a graph, it is rea-
sonable to hypothesise that they correspond to events
relevant to the social actors composing the network.
This provides an useful research tool which narrows
down a set of time periods within which researchers
can search for such events. For example, there are
some peaks in Figure 6 that do not correspond to the
Linux conferences listed previously. This could be in-
dicative of some other similar event of importance to
the debian community. If one has some reason to be-
lieve that such an event exists these peaks could be use-
ful in narrowing down the timeframe where the event
can be found.

Alternately, if we wish to generate a “realistic” but
synthetic social network modelling people’s relation-
ships through e-mail, we now have evidence that when
determining which edges to add next as we build the
graph, we should vary the probabilities of a possible
edge over time to reflect the above behaviour. Per-
haps by randomly generating times corresponding to
important events where the probability of adding an
edge between two more distant nodes should briefly
spike as they do in Figure 6.

In the Debian data set the probability that a relation-
ship joined two previously unconnected components of
the graph is about 0.33. Figure 7 shows a kernel den-
sity function displaying this probability over time.

This behaviour in social networks can reasonably be
interpreted in some sense as two separate groups mak-
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Figure 7. Average number of added edges that previously
connected unconnected components.

ing contact for the first time. This has important rami-
fications in such applications as the study of the spread
of forest fires, or disease vectors.

Note that again there is some correlation between the
largest mode in Figure 7 and the Linux conferences
listed previously (the conferences are again plotted as
vertical lines). More evidence that properties associ-
ated with social networks can vary significantly over
time and thus should be tracked in a dynamic fashion.

Finally, an element of the GPG dataset that we found
especially interesting is the insight into the privacy
behaviour of individuals that it provides. As stated
earlier, signatures between keys are required to ensure
key authenticity and thus people tend to acquire sig-
natures on an opportunistic basis for their own key.

As has been noted by Borisov et al (Borisov et al.,
2004), this mechanisms has privacy implications, in-
deed we have used it in this paper to acquire individ-
uals’ partial social networks. To an extent this con-
stitutes a weakness of the system as it reveals a great
deal of information to outside observers.

In the generic case, the individual makes use of his
relationships to acquire signatures to solidify the au-
thenticity of the public that he distributes. This en-
sures that a 'trusted’ signature path exists between the
sender’s own key and the recipient’s key, as the cost of
exposing the social path between both persons.

An alternative, used to prevent information from being
revealed, is to only sign ones own keys as they expire
or get compromised. Provided that an alternate means
of securing the distribution of the public key, this ef-
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fectively prevents the release of social information to
the keyserver.

A final solution used is the total dis-use of the sig-
nature mechanism by the user. While in a minority,
these users tend to provide limited, cryptic labelling of
their key to prevent the attribution of their messages.

6. Conclusion

We demonstrated how to build a social network us-
ing publicly available data from PGP™ key servers—
data which is ideal for the straightforward creation of
a highly dynamic network. Next, we showed that two
common small world related social network parame-
ters, number of connected components and previous
shortest path before a relationship, can change signif-
icantly over the life time of the network. Finally, we
provided evidence that these changes can be related to
events of interest to the actors in the social network
(in the case of our data sets, the events were Linux
conferences). This indicates that such dynamic anal-
ysis of these parameters could be useful in analysing
other social networks as well as possibly providing bet-
ter algorithms for generating synthetic networks.

There are two obvious directions for future work. The
first is to see whether other social networks exhibit
the behaviours shown in this paper. It is unlikely that
the network of e-mail relationships is unique in this
respect, but testing in other domains should be per-
formed. The second is to use knowledge about the dy-
namic parameters to try and generate synthetic social
nets and to see if these social nets are more “realistic”
than those generated by static parameters. Specifi-
cally, we hypothesise that varying these parameters in
a periodic manner will lead to an increase in the ro-
bustness of a generated network to disruption.
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