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Abstract

This thesis presents an automated, data-driven integration process for relational databases.

Whereas previous integration methods assumed a large amount of user involvement as well

as the availability of database meta-data, we make no use of meta-data and little end user

input. This is done using a novel join and translation finding algorithm that searches for

the proper key / foreign key relationships while inferring the instance transformations from

one database to another. Because we rely only on the relations that bind the attributes

together, we make no use of the database schema information. A novel searching method

allows us to search the database for relevant objects without requiring server side indexes

or cooperative databases.
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Chapter 1

Introduction

Database integration has been defined as “the problem of providing unified and transparent

access to a collection of data stored in multiple, autonomous, and heterogeneous data

sources.” [69]

The dual pressures of larger databases containing more data, along with the increasing

availability of low-cost bandwidth, is creating the conditions under which it is increasingly

worthwhile to integrate disparate information systems.

Most of the previous work in the area concerned itself with the theories required to

reconcile classical database theory to that of exchanging data between databases. Most

recently, work done by the community has extended itself to supporting the automated

integration of the databases.

This thesis concerns itself with extending some of the methods and advancing the field

in terms of its ability to deal with very large databases of unknown and obscure design.

1.1 Motivation and caveats

Most work still relies on the assumption that a human being will be involved in the inte-

gration process and will fetch and reconcile any difficulty in managing the transfer of data

or query. Automating this task is now a necessity because of the cost of manpower and

the rate at which the integration is expected to occur.

Another issue is that with pervasive networks of telecommunications, large numbers of
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application specific databases and the advent of the problem of the “deep” or “hidden” web

[94], the process of integration becomes an opportunistic one: the information needed for

a particular objective exists, but the location and accessibility of any particular database

is transient in nature.

In this model it is impractical to assume that an expert will be available for each

integration problem. Algorithmic methods might be better overall solutions, as they enable

us to attempt to take advantage of an opportunity to acquire the data of interest.

In many cases, much of the database experts’ time is spent on clerical processes of little

value-add, such as converting data from one representation to another or searching for the

correct information within the database. It is this clerical process that we aim to automate

in our research.

1.1.1 A data-driven approach to database integration.

Several projects have begun to tackle the integration problem from a top-down perspective,

using the schema and database information to design a solution tailored to the source

databases. Instead, we use a bottom-up approach that is data-driven in that it uses the

information contained in the database instead of the schema to make integration decisions.

In effect, we search the databases themselves for matches and infer translations without

depending on full schema information.

Seligman et al. [102] have published a survey that ranked the acquisition of knowledge

about the data sources as the data integration step requiring the most effort. Large and

complex industrial database schemas with over 10,000 tables and over 1,600 attributes per

table are not unheard of, and even with good documentation, the search for the correct

information is time consuming. Ventrone and Heiler [109] similarly reported that GTE

required on average 4 hours of work to fully understand a data element when the designers

were not available.

The data driven approach can be criticised for its non-trivial computational cost, and in

many situations this would be a serious concern. However, we pursue this line of research

for applications where computational resources are easier to acquire than additional domain

experts.

Problems that drive the demand for data-driven data integration include:

2



Incomplete database schema documentation and design instability: These are key

problems in integration in that the schema information required to perform the in-

tegration must be available. Database designs may have been lost or be stored in a

format that is either impossible to recover or in a format that is not machine readable.

If this information is not available, then we must rely on the data within the database

itself. Furthermore, in the case of very active and dynamic databases, the schema

is likely to change very often or to be abused as the data requirements overtake the

specifications of the schema. Similarly, legacy databases can also develop these situ-

ations as the design knowledge is lost while the data-centric knowledge remains, due

to day-to-day use.

Unavailability of integration support: Integration is a complex process that requires

significant information about the design of the databases in use. There are situations

where the database design knowledge is separated from the access to the data, with

two different domain experts required.

In these cases, we must be able to integrate the database based on its actual behaviour

instead of its (inaccessible) documented behaviour. The canonical example of this is

a web database; accessible through a web page or web services, but never intended

to be integrated into a third party service. The database design information is not

only unavailable from the designers, but in some cases the data source schema is

effectively obfuscated because of the specificity of the intended application. While

we do not assume that these databases were designed by an adversarial actor, it can

be said that this is effectively non-cooperative integration.

Increased data volume and complexity: A side-effect of the increasing complexity

and volume of information being stored within databases is that trivial assump-

tions about databases need to be revisited. Many current schema based database

integration engines make the assumption that the schema labelling is semantically

significant.

As the schema size of the databases increase, so does the complexity of the labels

given to schema objects. Hence, it is difficult to account for the difference between

different schema objects named “shipping address, shipping address dock and ship-
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ping address current” and to match them to another database schema.

Similarly, when exceeding a language threshold the namespace becomes exhausted

and labels are only used as keys for a data definition library. In this situation,

the schema labels become useless without additional documentation (e.g.: table

04GHS46F5) and cannot be matched against another database with a different defini-

tion library.

While the size of the namespace grows exponentially, meaningful human-readable

labelling can only grow at a much slower pace that limits our ability to describe the

information accurately.

On the other hand, two developments support the prospect of data-driven integration:

Standardised interfaces to database systems: Much work has been done to develop

standardised interfaces to facilitate the transfer of the data. Application program-

ming interfaces, such as JDBC and ODBC, make it now possible to retrieve infor-

mation easily from any table or column within most databases.

In practice, the use of a standardised interface to access diverse database management

systems implies that a mapping is used between the standard interface and each

database system.

Perversely, uneven implementations mean that in practice, it is often easier to retrieve

the actual data from the database instead of the schema information (relationships,

constraints, etc.) Since most current integration approaches require this information,

it is very likely that we could be faced with the frustrating situation where the

database data could be available, but the integration method would fail.

Therefore, we require an additional theory that will allow us to integrate a database

based on its observed data, as well as the reported schema.

Increased opportunity in data acquisition: Database integration research is implic-

itly being approached as a one-shot process by the community. It is essentially seen

as a capital project with a resource cost that is assumed to be an investment that

will yield returns based on the data accessed over time.
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Because the resources required to perform the integration are relatively high, only

the data sources that will yield a long term return will be considered.

An automated, data-driven, integration solution allows us to exploit short lived data

sources and / or data sources who’s contents could never justify the logistical effort

required by a traditional, human-driven solution.

1.1.2 Further considerations

As an added complication to the considerations already mentioned, we also face the problem

of the locality of the databases versus the integration process. In an ideal case, we would

operate the database locally as a simple repository without problems.

Yet, it does stand to reason that the databases being integrated were not initially inte-

grated because they were all separately stored and independently managed. This implies

that there exists a logical, if not physical, separation between the databases and the inte-

gration process must use a specific interface with certain limitations, such as bandwidth.

Database 1 Database 2 Database 3

Integrator

Documents

SQLPL Code

Figure 1.1: The separation between the integration process and the targeted databases
means that query results have a cost.

This places a restriction on the types of queries that we can and should pose to the

databases, since we have limited resources. We do not make use of a cost model within

this work because we are working at a coarser granularity. We simply state as an axiom

that in all cases the databases are too large in their size, or otherwise too costly, to enable

us to transfer all of the data locally to the integrator. Instead, the query facilities must be

used to their maximum potential.
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We make an explicit assumption that all databases are accessible using a basic subset of

SQL99 [58]. While other query facilities are in use, it is the one of the most widespread, and

its limited number of query constructs provides a base case for the integration methods.

1.2 Basic integration scenario

Let us assume that we have a local database Dlocal of movies and TV programs that we

own, with information about known movies and TV series. Furthermore, we assume for

convenience that this database is well-formed and can be projected to a single relation

Rlocal, as represented in Table 1.1.

Attribute Name Description Example1 Example2

Title The name of the media The Terminator Star Trek
SubTitle The sub-title/name of the media - Spock’s Brain
Year The year that the title was released 1984 1968
Type The type of movie (series, Movie) Movie Series
Genre The story genre of the title Action Sci-fi
Description The plot summary of the feature . . . . . .

Cast The name of an actor in the feature Arnold Schwarzenegger William Shatner

Table 1.1: Examples of the types of data contained within the MythTV and IMDB
databases.

Let us assume that there exists another database Dforeign that also contains information

on movies and TV series, among other information. We wish to discover what parts of the

database Dforeign to import into Dlocal and the specific querying mechanisms required to

move and transform the data.

We assume that some pattern of joins of the relations in Dforeign, possibly also involving

some text transformations of attribute values, will form a single relation that is semantically

compatible with the single relation in Dlocal. We also assume that such a transformed

relation from Dforeign will share some data values with Dlocal.
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1.2.1 Database model assumption

There is the question of what assumptions we make about the database model or the specific

features of the data in the foreign database. We have already stated our assumption that

the size of the database is too large to simply copy all of it over to a local integration client

for processing.

In practice, this means that the database schema consists of several thousand relations

whose labels do not convey either semantic or structural meaning. The number of relations

within the schema requires us to make a choice about what relations are to be integrated,

as there are too many to retrieve to the client for local processing.

The number of tuples within each relation is assumed to be large enough that retrieving

all tuples to the client is impractical. Of course, in reality not all relations are the same size,

and there may even be several relations that could be completely retrieved to the client.

However, as the process of discovery is in itself expensive, as we will see in Chapter 3, the

assumption actually lowers the complexity of the problem.

We assume that the information being integrated has many text components and that

its structure makes use of key / foreign key relationships. Since we use keyword searches to

identify areas of the database that are of interest, we assume that there is a certain hetero-

geneity within the database itself. This arises fairly commonly when a database contains

mostly human readable strings; which includes duty rosters, order shipment databases,

and citation databases.

Databases with more homogeneous contents would include RNA sequence databanks,

accounting ledgers and CAD part databases. Because these homogeneous databases have

many reoccurring short strings, it would be difficult for us to locate the semantically cor-

rect one. Finally in many homogeneous databases, and especially in the case of accounting

databases, the linkages between the relations are often maintained by an external applica-

tion and not the relational model. In these cases, our approach will be unable to integrate

the databases as the required information will not be present within the databases itself.

We expect that the database will have both indexes and primary/foreign keys and

that the query engine will make use of these to process queries efficiently. However, in

keeping with our assumption that the database client is unable to use schema information

for integration decisions, we assume that this meta-data is also unavailable directly to the
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database clients.

Therefore, we adopt a worst-case model of query costs and database operations. Intu-

itively, and from experimental results, we know that the major wall clock costs in database

operations come from the traversal of relations and from transferring data between servers.

Whenever possible, we constrain our queries so that any available index will be consulted

by the query optimiser and so that the number of tuples returned will be restricted.

For example, when we perform free text queries of the database contents, not only do

we restrict the number of returned tuples, but we also restrict the tuples to be processed

to those that are known to be joined to other relations. Hence, not only do we restrict the

amount of information returned, we also restrict the amount of information processed.

Interestingly, we also know that the marginal cost of retrieving an additional attribute

from a tuple is negligible when compared with the total cost. Therefore, when retrieving

results from the database we make an effort to retrieve as few tuples as possible while

retrieving as many attributes from those tuples as possible.

From a purely practical point of view, we explicitly do not allow joins over a single

relation between two instances of a same attribute, but we do support recursive joins

where an attribute points back to another tuple of the same relation. Furthermore, for

aesthetic reasons we represent strings with mixed case within the thesis, even through we

assume that any character comparison is case-insensitive.

1.2.2 Thesis statement

Given an end-user owned, local reference database Dlocal with a single relation Rlocal, and

a foreign source database Dforeign that contains related information of interest to the user,

we wish to locate joined tuples within Dforeign that contain similar information to Rlocal

and insert them into the appropriate attributes of Dforeign. Should additional information

be located within the joined tuple, the option of inserting new attributes into Rlocal should

be supported.

1.2.3 Proposed solution

The overall solution for the database integration problem detailed in this section is dis-

played in Algorithm 1. We make use initially of a free-form query provided by the end user
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that is an example of the type of information that is required. A sample query is “blade

runner harrison 1984” for integrating a movie database with his personal movie catalog.

Using this free-form query, we search the relations contained within the source and

target databases and identify specific tuples that may be of interest to the user. This gives

us a starting point for integrating the databases, as we now have similar instances within

both databases that we can attempt to match and translate.

Hence, for the previous query we would find “harrison” in attribute person in the IMDB

database and in attribute name in the MythTV database. We would be misled if trying to

match the attributes based on schema information, since the IMDB database makes use of

the name attribute for title information. By using a query, we are able to generate a small

subset of similar instances that are likely to identify matching attributes and relations.

We should not immediately attempt to match and translate the information from one

database to another, as this would incur large computational costs. Instead, we pursue

an approach where we attempt to resolve the foreign key dependencies of the foreign

database first (though without the knowledge of what attributes are actually keys). This

is possible because we already have instances that are linked through an implied query

relationship. Therefore, we can combinatorially search the foreign database for the specific

attributes pairs that provide this foreign key relationship. Using this method, all of the

query keywords can be used to identify the foreign key constraints that are most important

to the information of interest to the user.

For example, with the shortened query “blade runner AND harrison” we can retrieve

several instances for token “blade runner” on attribute table1.title and on attribute ta-

ble2.name for “harrison”. Searching for key relationships is then a simple combinatorial

set of queries that attempt to retrieve tuples matching the query tokens across a potential

join of two different attributes.

By using a similar process as above, we can also identify a projection of the information

within the database. The two joined projections of the identified relations in both databases

are then matched using the instances that have been located using the query tokens.

After some matching attributes have been identified in both database projects, we can

next search for unmatched relations or attributes. Two basic steps are required: search-

ing the foreign database for unmatched attributes contained within the local database

and inserting those foreign attributes into the local database that contain new types of
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Data: Based on the local database Dlocal, the foreign database Dforeign and a user
query Q.

foreach Token Qi in Q do1

Pick best attribute in local database Rlocal;2

end3

Find best tuple for Q;4

Sample M − 1 more tuples from Dlocal;5

foreach Rforeign in Dforeign do6

foreach Aforeign in Rforeign do7

foreach Qi in Q do8

Get similar instances to Qi;9

Generate a NET() for Qi;10

end11

end12

end13

while !(∀ NET() unjoinable) do14

foreach pair of NET()1 and NET()2 do15

if joinable then16

Merge(NET()1,NET()2);17

end18

end19

end20

foreach Alocal ∈ NET() in Rlocal do21

Translate Alocal against Rforeign using NET();22

end23

foreach Alocal! ∈ NET() in Rlocal do24

Match Alocal against Rforeign using NET();25

end26

Algorithm 1: The integration process for our scenario.

information.

In the first step, we follow a method similar to the query method employed above. For a

sample of records within the local database, we search the foreign database for relations or

attributes containing the unknown attribute instances and that match the current sampled

record. If necessary, new foreign keys to other relations are also searched.

In the second step, we search the local database for attribute instances matching the
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new attribute and if no attribute is found, we insert a new attribute within a relation and

update the dataset using the current relational data.

As this point, the linkages between both databases are satisfied and a series of relational

queries are constructed to import the data from the foreign database to the local database.

1.3 Thesis Novelty

The novelty of this thesis lies in the algorithms that solve searching, matching and trans-

lation problems within and across relational databases without requiring pre-processing of

the data or the indexing of the data on the foreign database.

Whereas in previous work these problems required privileged access to the databases

and human intervention, our methods do not expect foreign database cooperation and

require a minimum of human intervention.

To the best of our knowledge, this is the first work where the search for the joins that

bind the relations is motivated by correctness instead of speed. Previous approaches relied

on parameters to determine the reasonableness of joins, without concern for the problem

of setting the parameters. In our approach, feasibility checking is based on obtaining

consistent redundant information when applying a derived translation to the databases.

Previous integration methods required the use of schema information to locate both

foreign keys matches and related information across databases. We make no use of schema

information.

Finally, we provide methods by which the transformation of data from one database

representation to another is determined from the data directly. No user intervention in

terms of record alignment or correction is needed.

1.4 Thesis organisation and overview

In Chapter 2 we review the state of the art on data integration theory and some of the

systems already proposed. The datasets used in this thesis both for performance evaluation

and the integration scenario are described.

The organisation of the rest of the thesis follows the functional elements of the overall
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process required to solve the integration scenario. For example, the search process of Algo-

rithm 1 makes heavy use of the query and retrieval models that are covered in Chapter 3.

Similarly, the creation of the query models for both searches and joins, require special

database sampling methods that are also reviewed in that chapter. This is necessary in

order for us to deal with extremely large and unknown databases.

Chapter 4 reviews the possible methods of performing joins between database tables

with little information about the schema. We review previous methods of performing joins

from a client’s perspective. These methods are necessary to support both inter (matching)

and intra-database joins.

After knowing the relationships between the tables of each database, we must find

a means of translating the instances from one database to another. This is reviewed in

Chapter 5 where we review previous work in that area and novel work on complex n to 1

translations.

Chapter 6 reviews the details of Algorithm 1 and of the experimental setup used to

test its performance on real world data. We report on experiments with two different

datasets and present conclusions regarding the algorithms. In all cases, these algorithms

make conservative assumptions about the databases that are being utilised and about the

amount of support the integration task is given. This implies that our experimental results

are in most cases, conservative.

Chapter 7 concludes with a review of the novel work in this thesis and some future

work required to solve still open problems.
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Chapter 2

Previous Work

In this section we review the theoretical background of database integration. We first begin

with the theoretical background and describe generic integration problems. Previous work

in the areas is reviewed, and we finish by relating our own novel work against their work.

2.1 Theoretical background

The integration of several relational database sources has been modelled by Lenzerini [69],

who defines a data integration system I between two databases as a triple < G,S,M >.

G refers to the global schema of the integrated information, S is the source schema of a

specific database, and M is the mapping between S and G. M provides the translation

qs → qg that expresses a query from the global schema into the source schema, with both

queries having their own languages and alphabets.

Database integration systems can be grouped into two large categories: global as view

(GAV) and local as view (LAV), depending on the approach taken to the translation of the

databases. In a global as view approach, the contents of the global schema is first defined

and the contents of the source databases matched to them. In a local as view approach,

the schema of the source databases is pushed to the global schema and integrated there.

Both methods are valid, with the advantage that the global as view method may pro-

duce the precise results required to meet the integration objectives. Local as view returns

all information within the integrated database, which can be desirable when dealing with
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previously unknown databases. Examples of local as view systems include the Information

Manifold project at AT&T Bell Labs [63] and the XML system by Manolescu et al. [76].

Global as view systems include Garlic [19], COIN [47], and MOMIS [9, 11].

This model is commonly extended within the literature with two additional concepts,

that of the wrapper and the mediator [82]. The term wrapper is normally used to refer to

a software layer that handles the communications and the mechanical details of sending

queries to the specific type or implementation of the databases. The mediator represents the

conceptual process that implements and executes an integration strategy for one or more

databases. This may be implemented as one or many mediators, and it is these conceptual

blocks that capture the integration decision logic, including Lenzerini’s mapping M .

The system proposed within this work takes a global as view approach to database

integration, as we attempt to relate a data source against a previously existing database

and take parts of the information only.

2.2 Integration Reasoning Approaches

A distinction in the systems and in the approaches is whether the problem of integration is

taken as a deductive or an inductive one. Several engines take the position that database

integration is a logic problem that requires finding a path linking all databases together.

To do this, all type, instance and schema conversion functions are previously defined and

the actual work of integration is a deductive logic exercise of aligning the correct logical

conversions in the right order to achieve the desired integration function.

A second viewpoint, and the one used within this thesis, is that of inductive reasoning.

We make no assumptions that conversion or matching functions exist and use the evidence

produced by the databases to support a solution, even though it may not completely

ensure its logical validity. It can be argued that deductive approaches to integration are

best suited to integration problems occurring within the same software system, such as in

the case of a federation in Figure 2.1, as the designs will have been formed from a core

database dictionary. Furthermore, deductive systems tend to be tightly wedded to the

database schema, which provides the starting point for reasoning to occur, while inductive

systems rely on undeclared relationships inferred from the database values.

Examples of a deductive system would include the COIN system by Bressan et al. [15],
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the SIMS system by Knoblock et al. [64], Ariadne by Arens et al. [7] and TRANSCM

by Milo and Sagit [81]. All of the systems depend on accurate information about possible

matchings, transformations and equivalences. Several systems, including SKAT by Mitra

et al. [82], make use of formal knowledge bases to create their solutions. Conversely,

Autoplex by Berlin and Motro [12] have a completely inductive solution where a Bayesian

model is used to link various attributes, relations and tuples to a global databases. Another

example is LSD by Doan et al. [31], which makes heavy use of schema names and instance

values to produce its integration solutions.

2.3 Integration Patterns

Several generic integration problems can be distinguished by the relationships between

the different databases being integrated. Figure 2.1 depicts a federated database, where

several databases cooperate to exchange and serve data to various clients. While the data

and schema being administered by each database may differ, the databases are assumed to

be cooperating with each other. Furthermore, their design and purpose is assumed to be

inherently compatible, in that they were produced by the same environment or designer.

This is the simplest case in terms of the complexity of the search for a solution, as all of

the information and meta-data are available within a common environment.

Database 1

Mediator 1

Database 2

Mediator 2

Database 3

Mediator 3

End User
Query

Figure 2.1: Basic federated data integration system.

A similar, but much more difficult, situation is depicted in Figure 2.2, where several

databases are communicating on a opportunistic basis with no clear organisation. This

15



lack of organisation is reflected in the differences in the design of the databases and in that

the integration solution is often a temporary one, such as described by Franconi et al. [40].

Because the integration tends to be for a short period of time and transient in its nature,

the cost of finding new solutions is offset by the attrition of previous constraints imposed

by disconnecting peer databases. Furthermore, the data gathered during other integration

sessions allows the integration system to learn based on it previous experience by building

a larger data dictionary, such as in LSD [31].

Peer 1

Mediator

End User
Query

Database

Peer 2

Mediator

End User
Query

Database

Peer 3

Mediator

End User
Query

Database

Figure 2.2: Basic peer-to-peer data integration system.

Figure 2.3 represents the canonical integration problem, where several databases are

integrated under the same schema, as described by Templeton et al. [106]. The objective

is to make most of the information available through the combined schema while insuring

that the information is reconciled properly. This is one of the more difficult situations, as

inconsistencies and conflicts can occur. This requires specialised code not only to handle

schema mismatches, but also to handle complex integration problems that require infor-

mation external to the databases. Take for example, the situation where one database

represents historical information that was acquired at a certain date and another that con-

tains fully time-stamped information. Integration logic is required to deal with the fact

that the schemas are not only different, but that the integration can only be done if we

know at what time the first database was created.

Figure 2.4 is the last case that we consider and the one that we attempt to solve

generically in this thesis. We choose this scenario because it is a fundamental building

block of all of the other scenarios, where a specific component of the foreign database
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Database 1 Database 2 Database 3

Mediator

End User
Query

Figure 2.3: Basic data integration system.

Source
Database

Mediator

Target
Database

End User
Query

Figure 2.4: Basic load of information from one database to another.

must be integrated. All three of the previous scenarios must at some point go through a

subprocess that mirrors the one in Figure 2.4.

This case is obviously less complex than Figure 2.3, in that we have only one foreign

database to deal with. However, before we can deal with inter-database conflicts, we must

first identify the contents and the mappings of the databases. Thus, one instance of sub-

case Figure 2.4 must occur for each foreign database in Figure 2.3 before we can attempt

final integration of all the systems.

This is also a sub-case of Figure 2.2 in that a process akin to Figure 2.4 must occur

for each new peer. Most common database integration problems have a longer expected

lifetime than that of Figure 2.2, where a rapid ‘best-guess’ solution is probably preferable

to a perfect solution that is not obtained until after the peer has disconnected.

The peer-to-peer case has the advantage of accumulating a large store of meta-data

due to the variety and frequency of integration tasks to be performed, which mitigates the

speed requirement. For our purposes, we assume a boot-strap situation where no initial
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data dictionary is available and where the necessary time can be allocated to a proper

initial integration.

Finally, Figure 2.1 also contains some iterations of sub-case Figure 2.4 to select the

proper translation and mapping functions from the data dictionary. This task is simplified

by a complete data dictionary for the entire system. For our case, we assume that the

data dictionary is unavailable, under the premise that a generalised solution to Figure 2.4,

without meta-data, will also readily provide a good solution when provided with the full

meta-data of Figure 2.1.

Hence, the case of Figure 2.4 is a fundamental base case that assumes the minimum

in terms of meta-data availability. We present here a generalised solution to this sub-case

which provides a generic component for database integration systems.

2.4 Research areas

Database integration research is a wide field, not only in its complexities, but in the

specific subfields of research that it has engendered. Much of the early work concentrated

on the interoperability between different systems and the underlying database algebras and

transformation theories required to link different database types.

The first integration systems, such as those by Landers and Rosenberg [68] and Litwin

[73] used a deductive approach to database integration. These concentrated on creat-

ing languages to express the various actions required to integrate the databases and the

reasoning required to check the validity of the integration solution.

Some automation was attempted in creating systems that could reason through the

integration process. These would accumulate the database design specifications and output

mappings for the different schemas. Systems such as Hermes by Adali and Subrahmanian

[1] and InfoMaster by Genesereth et al. [44] attempt to support the creation of solutions

by finding a path satisfying all possible axioms to move the data from one database to

another.

These approaches are based on a formal system of reasoning where the database is

known and all of its behaviours explicitly declared. Hence, an attribute salary would be a

positive decimal number implemented as a 2-byte integer whose value ranges from 30,000

to 100,000 and whose units represent Canadian dollars. A set of conversion functions that
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match on this description convert any instance into another attribute, such as a salary in

American dollars.

This level of information about a database is ontological in its details and such informa-

tion is generally unavailable in most situations. Approaches by Levy et al. [71], ARTEMIS

by Castano and Ferrara [21] and InfoQuilt by Sheth and Larson [103] attempt to create

tools that convert one database’s query to another by using outside ontologies. However,

the problem of acquiring the background information for the required reasoning remained

unaddressed.

Since most databases can at the very least enumerate their schemas and provide

minimal meta-data, the idea of simple schema matching has been attempted. This ap-

proach recreates the equivalences required by earlier query rewriting systems by searching

the various schemas for matching elements. The requirement here is to determine that

Aforeign
yy 7−→ Alocal

x so that an integration engine can deduce the conversion.

MOMIS [9, 11] builds a global schema based on the source schema and improves on

the matching of schema name elements by using a Word-Net [79] database to attempt

to match labels that are semantically related if not exact matches. The Clio project [80]

uses both label matching and a Bayes classifier (using attribute instance values) to suggest

potential matches to the end user. Cupid [75] also uses manual intervention by the user

and leveraged the instances of attributes to attempt to match schemas. Madhavan et al.

[75] claims that through their approach better performance was obtained than both the

MOMIS system and DIKE [88] schema matching algorithm.

Embley and Xu [115] use both schema labels and attribute instances to generate schema

matching, as well as a series of domain ontologies to match unknown strings. SEMINT by

Li et al. [72] presents a matching system that uses neural networks to match elements from

different schemas. This is done by acquiring 20 different metrics from both the data and

meta-data and training a neural network with human generated examples. The DELTA

system by Clifton et al. [26, 10] takes another approach by applying information retrieval

methods on the meta-data itself. All available schema information and data-dictionary

entries for each element is loaded within a text database and queried using the text tokens

of another database to integrate. The elements whose meta-data score highest for each

query was assumed to be a match for that element of the schema.

AutoMatch [13] uses an approach where a dictionary of all the database meta-data
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has been manually acquired by the user. The dictionary is then re-used for any further

integration project. The LSD project by Doan et al. [31] attempts to perform schema

matching using the schema labels, but also makes use of specialised hand-created matchers

that recognise schema elements based on statistical models of instances (q-grams or specific

instances, such as a list of countries).

Similarity Flooding, an algorithm proposed by Melnik et al. [78], assigns a matching

score between different schema elements in a bottom-up approach. Attributes are first

scored for similarity, then the collection of all similarities for a certain relation is used

to determine which other relation it is linked to. Finally, COMA by Aumueller et al.

[8] makes use of a combination of schema labels, instance data, and ontological resources

to identify the correct mappings. Meta-data from previous matchings is also kept in a

knowledge database in an attempt to re-use the knowledge from one integration exercise

to another. Finally, one of the more interesting projects is Autoplex, described by Berlin

and Motro [12], which achieves simple translations and matches. The authors use several

Bayesian methods on the actual instance data of the databases themselves. They then use

the models not only to match schema elements across databases, but also to attempt to

infer query constraints by comparing tuples sets from both databases under different query

conditions.

The final research area that we review here is the question of the translation of the in-

stances themselves. As previously stated, several assumptions have been previously made

about the compatibility of the schema elements once matched. However, it may be unre-

alistic to assume that databases will represent the same piece of information in the same

manner. One database might represent a person’s name first-name first “Robert Warren”,

while another might opt to have last-name first “Warren, Robert”. Note that we are con-

cerned about the different possible representations of the same object. Other possibilities

include the differences between time and date standards, part identification numbers and

case normalisations.

We contrast this last area against the problem of data exchange where the objective is

the materialisation of the instance. This research area is reviewed by Fagin et al. [33, 34]

where specific instances are selected to be copied under different the constraints of the

target schema. While this research area lends itself to very complex problems, such as

the peer-to-peer scenario described by Fuxman et al. [41], the actual translation of the
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instance representation is assumed to be compatible.

The Clio system described by Miller [80] has limited support for the description of

translation tables. For example, one can define a translation table converting human-

readable months to numerical ones: {Jan ⇒ 01, Feb ⇒ 02, Mar ⇒ 04, . . ., Dec ⇒ 12}.

The IMAP system by Dhamankar et al. [30] takes a much more detailed look at the

problem, especially at the issue of learning mathematical conversions. By using equation

learning methods, they propose a method whereby the mathematical equations relating

different attributes are deduced using tuple values. The end result is that relationships

such as Cost = UnitCost * NumberOfUnits are recovered from the data automatically,

even if at a high computational cost. They also suggest that “format learners” should be

constructed to infer differences in the representation of instances using the data directly

from multiple databases.

2.5 Relationship of proposed approach to previous

work

This thesis concerns itself with the retrieval and translation of a subset of a foreign database

into the format of another local database. This is an inductive solution with a “global as

view” approach to the problem of relating outside information to a local database. Only the

information required by the application environment is integrated. Furthermore, when we

perform our data matching we make no use of schema information as do COMA [8] , LSD

[31] and IMAP [30]; we actively search for joins to link the information as Berlin and Motro

[12] suggest. Finally, the instance data is translated from the foreign representation to the

local one without user intervention in a manner that was suggested by Dhamankar et al.

[30]. To the best of our knowledge a method that translates generic instances, locates and

verifies potential joins within a database, and performs data matching based on instance

data only without user input is novel. The only end-user involvement is the entry of a

free-form query that serves to identify what specific type of information is required of the

integration.
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Chapter 3

Sampling and Retrieval Models for

Databases

If you know the size of the database, it is not a very large database.

A discovery component is often part of the database integration process. We may

not be completely aware of the information contained within a database, or we may not

know where in the database the data of interest is located. In effect, we require two basic

procedures: a means of searching the database for information of interest and a means of

discovering the proper joins between the relations to obtain a single, possibly compound

item of information, for multiple relations of interest.

A complication to these tasks is our lack of knowledge concerning the contents and size

of the database. While the schema can be used to reference the various relations within the

database, we are without information as to their contents or the number of tuples within

them. This complicates our search approach in that size information is a valuable piece of

information to plan an effective and efficient search.

The situation depicted in Figure 3.1 is typical of the architecture that we face in several

integration situations. The foreign database is accessible through a computer network and

its contents unknown. We cannot simply copy over all of the information and analyse it

locally; we must make use of the query facilities available.
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Figure 3.1: From a set of known instances, we wish to retrieve instances from an analogous
column with similar instances.

In this chapter, we review potential sampling and retrieval solutions that can be used

to solve the problem of the unknown database. We present a novel retrieval solution

implementable within relational databases that can also double as a means of suggesting

potential joins. Evaluating the joins is the topic of the next section. We close the chapter

by providing a performance comparison of the novel method with previous methods.

3.1 Previous work

Here we begin by reviewing previous work done in the retrieval of inexact instances from

relational databases and client-side sampling methods. Both of these areas are different

from traditional database methods, in that relational database researchers have historically

assumed an exact instance match paradigm as well as server side sampling.

3.1.1 Imprecise retrieval

Database retrieval has been investigated in both the traditional database area and in the

information retrieval area, differing mostly in the query answering model used. Classical

databases tend towards precise queries retrieving specific instances, whereas information

retrieval prefers top-k ranked retrievals based on a likelihood estimate.

Given a topic T and a set of documents D, an IR system returns an ordered sub-

set S = s1s2 . . . sn of D, ranked according to an estimate of the likelihood of relevancy

of the document to T . In this thesis we use the generally accepted Average Precision

(Equation 3.1) metric as defined by Cormack and Lynam [27]. By averaging the Average

Precision metric over several topics, we obtain a Mean Average Precision (MAP) score

that we can use to benchmark different retrieval systems.
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AP =

|S|∑

k=1

rel(sk) ∗ Precision(k)/R (3.1)

Precision(k) =
k∑

i=1

rel(si)/k (3.2)

R =
∑

di∈D

rel(d) (3.3)

rel(d) =





1 if document d is relevant to T

0 otherwise
(3.4)

In our work we require both of these query models. Any eventual integration solution

will obviously need to respect the integrity constraints of a classical relational database.

But to search for the proper integration solution we need to find objects that are represented

differently in multiple databases.

As early as SQL99, there has been support for the use of regular expressions to retrieve

certain instances from text attributes. Furthermore, many of the modern systems have

an indexing facility for text. However, the purpose of these indexes is the rapid search

of the data using the same regular expression facilities as an un-indexed attribute would

use. Furthermore, these are not necessarily provided for the particular database in use

or not available to all users. For this reason, we require a method generalisable to most

databases’ query engines. The indexing that we review here allows users to search the text

using similarity metrics that aren’t supported directly in most systems.

The complication lies in the generation of a query that will search for instances within

a certain similarity distance. Determining what model should be used to make a decision

on acceptable dissimilarity is a challenge.

A simple example is the use of lower and upper case characters within databases.

It is reasonable that some databases would represent names in a variety of formats, for

example all uppercase “ROBERT”, all lowercase “robert” or in mixed case “Robert”. By

inspection, the retrieval would be very simple for a human being, while requiring processing

for a machine. This particular retrieval problem can be solved by using one of the database

case normalisation functions as part of the query.
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In traditional relational database theory, we query relations based on exact matches;

an instance matches another or it does not. In the context of data-driven integration, the

instances being searched for are likely to be represented in different ways. This means

that we require a way by which our queries will tolerate inexact matches between instance

values.

Because the foreign database is mostly unknown to us, we require a means of performing

these queries in a way that can be done on the database itself. It would be preferable to

have all of the data within a general programming environment where we could manipulate

the data as we wish. But the unknown scale of the database puts us into a situation where

the data transfer can be prohibitively expensive.

The canonical solution for most string comparison models is the use of q-grams [108].

Short substrings of length q extracted from two strings are matched against each other. As

an example, the string “possible”, contains five 4-grams, namely {“poss”, “ossi”, “ssib”,

“sibl” and “ible”, and so a string s of length |s| contains |s| − q + 1 q-grams. We then

compare strings x and y from attributes X and Y according to the number of distinct

q-grams that are shared by each string, in the manner of Equation 3.5.

ScorePair(a, b) =

distinct(|s|−q+1)∑

α=1






1, if instance x of X and instance y

of Y share q-gramα

0, if not.

(3.5)

This allows us to identify string pairs that have some sub-strings in common and hence

have a high likelihood of being similar instances.

However, this still does not normalise the relative frequencies of the q-grams. Long

strings containing several commonly occurring q-grams would be ranked higher than shorter

stings with rare and relevant q-grams. Hence, we assign weights to each q-gram according

to the frequency with which it appears in both the individual string and string collection.

Equation 3.6 represents the Term Frequency - Inverse Document Frequency formula

(TF-IDF, see Salton et al. [99]) for calculating a weight for an individual q-gram within a

string s with a string collection (attribute) S: wsα is the weight assigned to the αth q-gram

of string s, where the first term |q−gramα∈s|
|s|−q+1

represents the frequency of gram α within the

specific string s and |S|
|q−gramα∈S|

represents the number of strings within the set over the

25



number of strings that contain the αth q-gram.

Equation 3.7 then represents a simple weighed scoring function for a pair of values from

a and b. As before with Equation 3.5, we iterate through the list of possible q-gram within

both strings, but weight each gram based on their score for both strings. This prevents a

q-gram that is too prevalent within either string set from skewing the results.

wsα =
|q−gramα ∈ s|

|s| − q + 1
∗ log

|S|

|q−gramα ∈ S|
(3.6)

ScorePair(a, b) =

distinct(|s|−q+1)∑

α=1






wxα ∗ wyα, if instance x of X and instance y

of Y share q-gramα

0, if not.

(3.7)

The canonical use is to implement an information retrieval engine on top of the database

using a q-gram retrieval model. This approach has already been implemented within an

SQL database by several researchers for inexact string matching applications. Koudas et

al. [67], Chaudhuri et al. [23] and Gravano et al. [51] all use variations of this approach to

match similar records using TF-IDF and cosine similarity [100]. All of these approaches

require the generation of index tables.

The approach is reliable but suffers from two major drawbacks: it is computationally

expensive in time and storage and does not deal well with situations where the q-gram size

is poorly set.

Using a TF-IDF model requires the storage of a gram weight index on the server, with

an approximate creation cost of t + t ∗ (w − q + 1) + t2∗(w−q+1)2

m
, where t is the number of

tuples within the relation, w is the average character width of the attribute being indexed

and m is the number of unique grams present within the attribute.

The total storage cost of the index is about t ∗mavg where mavg is the average number

of unique grams per instance within the relation. Koudas et al. [67] were able to amortise

some of this cost of building and storing the index by setting minimal score thresholds for

q-gram retention. Similarly, Mazeika et al. [77] used similarities within the strings and

q-grams to reduce the index size while providing an estimate of the selectivity of the query.
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Finally, there exists no simple way of updating the index as the data changes. The

weights required to calculate the scores are based on collection and document wide averages

that must be recalculated for each update and doing this over an existing database system

is non-trivial.

3.1.2 Database statistical sampling

Sampling is heavily used by most database management systems to optimise their internal

processing, with good surveys provided by Gibbons et al. [46] and Olken and Rotem

[86, 85]. The research is primarily one that is oriented to server-side query processing and

optimisation.

Most of these methods rely on an intimate knowledge of the physical layout that the

database creates and of the storage devices that are in use. Because of their close proximity

to devices, both the query optimisers and the sampling methods that they use function in

terms of blocks of storage.

A mapping layer translates the needs of the query engine to the storage layer. However,

since a relation behaves as linear storage when used through the query engine, we cannot

use the sampling methods meant for query optimisers that assume a block view of the

problem.

The earliest known work in the database application area is by Jones [60], who described

algorithms for the random sampling of records from magnetic tape using random length

intervals. With the advent of random-access devices, the possibilities for sophisticated

analyses have increased as storage is no longer a linear access device.

Chaudaury et al. [25, 24] covered some of the possibilities of block sampling in terms

of optimising how many tuples should be sampled at the least cost. Utilising the block

nature of the storage as a iteration size, they approached the problem of sampling by

incrementally adding more data to a histogram with an error measure. The process was

repeated until the error converged to a stable value.

Their work was in the context of query optimisation within Microsoft SQL Server and

assumes that equi-height histograms are being generated for arbitrary precision numerical

values. It also assumes the possibility of addressing direct disk blocks. Hence they use this

to their advantage by pre-computing the amount of data that each block can contribute
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to the histogram and discarding it if its values are too similar. This limits its usefulness

for database integration work if the values are retrieved from a remote database without

block addressability and the values required for inter-database joins are strings.

They also revisit some work done by Haas et al. [52] on the estimation of unique values

within a table. This is useful in that it permits the prediction of the size of a join [83] or

of the number of possible unseen entries left within the relation. Much of this work rests

on previous research on the catch and release of animals in the wild: how long should one

keep trapping animals before concluding that another species would be identified. Such

methods have been provided by Fisher et al. [37] in non-parametric models and by Good

and Toulmin [50] for parametric models. Chaudhuri et al. [25, 22] provide a well performing

estimator for the number of distinct values within an attribute, with a slightly better error

rate than the one by Haas et al. [52]. Bunge and Fitzpatrick [18] review several of these

methods in the context of distinct value prediction in relational databases.

Straightforward methods of sampling also include equidistant sampling where a certain

percentage of tuples are selected from a relation at equi-distant location. Similarly, random

position sampling would select a certain percentage of tuples at uniformly distributed

locations within the table.

Most recently, Gravano et al. [51] compared the performance of equidistant sampling

versus random position sampling and found the two methods to be equivalent. The equidis-

tant sample is sometimes preferable to a random position sample, as we do not need to

pre-compute the random lengths in order to sample the values in a single pass.

Another sampling method that has been heavily used in the area of limited-length

data streams or sequences is Reservoir Sampling. In this approach a limited number of

rows are retained while traversing the dataset and this reservoir of rows is taken to be a

representative sample of the dataset.

First presented by Fan et al. [35], the algorithm is attractive because of its limited

memory footprint: a set sized “reservoir” of values is created to hold the sample. As we

iterate through the attributes values, we use a random variable to determine whether this

particular instance should be inserted into the reservoir.

This research was continued by Vitter [111, 110] who improved on the process by

adding the use of ‘skipping’ operations where blocks of rows would not be inserted into

the reservoir. This speeds up the sampling process by using seek operations instead of
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merely read operations in databases. The intuition behind the skipping algorithm is that

we must calculate the number of times that we are likely not to select a value for any of the

slots within the reservoirs. In this manner we use an expansion of a number of Bernoulli

trials to calculate the seek distance. Similarly, by using a random variable, we calculate

the number of successful Bernoulli trials.

These processes enable us to sample the database in a scalable way. However, they all

require us to know the size of the database before the sampling process can begin.

Park et al. [89] revisited this problem with the objective of removing the constraint

that the size of the dataset should be known a-priori. Instead, each new instance can be

repeatedly assigned to any given slot with the same probability. Hence for any sampled

value, and a reservoir size of m, the probability that a value will be inserted into the

reservoir is determined by m Bernoulli trials. For each success, a value is removed from

the reservoir as in the original method.

Johnson et al. [59] implement this method as a specialised operator within a relational

database system for extremely large databases. Additional work by Park et al. [89], similar

to Vitter’s work, suggests also using the ‘anytime’ algorithm with skipping, which can

result in a speedup, as not every value needs to be transferred to the sampling algorithm.

Furthermore, since it does not need to know the length of the table, we can have the

sampling method run in the background of our integration process, thus ensuring that

the best information about the relation content so far is available. Ironically, this creates

another problem, in that we are unsure of the validity of the current reservoir contents

unless a significant amount of information has been processed. How much data is significant

is unclear when the dataset is of unknown of size.

3.2 Research Problem

The work done in this area must be adapted before it can be used within our own appli-

cation domain. Specifically, some scalability, cost and fundamental assumptions about the

data are invalid without a-priori information from the database. We review here some of

these issues.
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3.2.1 Inexact retrieval within large relations

In the case of retrieval engines implemented over a relational database, we are limited in

what we can implement within the DBMS as a similarity retrieval function. The traditional

information retrieval approach uses Term Frequency - Inverse Document Frequency (TF-

IDF) approach, which in our integration model will require the creation of a q-gram index

table by the client. Even if we are in a position to avoid the transmission cost required

to form the q-grams from the strings, there remains a large processing and storage cost to

this method.

Furthermore, we may not be in a position to create temporary tables. Even if the

database is not an adversarial one, it may be non-cooperative and prevent us from creating

server-side temporary tables. Similarly, even if we have the option of creating temporary

tables, we would prefer not to index some relations altogether if we judge them to be non-

relevant or too small to warrant indexing. Thus, it would be preferable to have a retrieval

method that would not require an index or pre-processing and yet be applicable on any

arbitrary relation within the database.

Another problem is that setting the q parameter, or the length of the grams, must

be decided at the onset of the retrieval operation. There exists a large computational

advantage to increasing the size of grams, as this decreases the number of grams generated

for each string instance. This comes at the price of a decrease in the recall of the instance

retrieval function, as large sequences of characters will need to match exactly for them to

be considered similar.

Another concern is the q-gram model that is used to estimate the similarity of strings,

in that it may not account for all possible transformations. Consider time-stamps, where

the information that is valuable within it is in sequences of characters (hours, minutes,

day, year, ...) separated by constant separators. However the separators and the order of

the sequences used might differ between databases. Should we use tri-grams to index such

a string, no gram value would ever be the same (e.g., “:30” would not match “-30”).

Another approach that is possible is the concurrent use of multi-length grams from

the same data [108]. Intuitively, we know that not all parts of a string have the same

importance. Space, or blank, characters for example, convey no information save to act as

separators for different pieces of information, such as words in some human languages.
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For our purposes, it is not always clear where we can segment an attribute instance

for maximum retrieval efficiency. The problem is similar to the one of text segmentation,

where words from a sentence stream are segmented. Most of these methods, such as

the one proposed by Peng and Schuurmans [91], depend on a lexicon or dictionary being

available on which machine learning methods can operate; these are not available in our

case. Similarly, Goldsmith [49] does suggest a gram oriented probabilistic method for

making gram selection, and Ge et al. [43] present a dynamic programming solution that

is based on attempts to segment characters in a stream. Unfortunately, these approaches

are oriented towards large strings, and they do not apply well to our problem area.

3.2.2 Sampling from a set of unknown relations

We wish to explore a series of database relations about which we know very little. The

intent is to locate information that the user has specified as the integration starting point

and to infer the structure of the database from the data.

With the schema providing a means of referencing itself as relations, we need a method

of analysing each relation for its contents in a fashion that is scalable and useful to our

integration objective. Previously, Dasu et al. [28] suggested that “sketches” of each at-

tribute and relation should be constructed to allow for them to be compared to each other

or a query. This requires the traversal of each attribute as a histogram or content (q-

gram) sketch is built from the collected instances. Similarly, Rowe [98] presented an idea

for a standardised statistical profile that would be computed for all attributes within the

database. Since this was meant to improve the performance of optimisers on the database

server itself, little thought was given to its use from a client perspective.

Similarly, the SEMINT system by Li et al. [72] automatically collects statistics from

every attribute within every relation in a database before attempting to match schemas.

This requires at a minimum J ∗ |Aforeign
j | relation traversals to acquire only the statistics

about the attributes, without any indication about its content. Thus, the computational

cost imposed on the system is large even before the integration process begins.

A problem with most sampling approaches is that they require the traversal of a single

relation multiple times, as in Figure 3.3, in order to sample every single attribute individ-

ually. This is a high computational load on the database as the relation is traversed from
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Figure 3.3: Current sampling methods
involve traversing the same relation sev-
eral times in order to sample each indi-
vidual attributes.

top to bottom several times. Hence a possibility would be the sampling of the relation

itself and then the generation of histograms on the individual attributes.

This is observable in Figure 3.2 where the time required to retrieve all the tuples are

plotted against the number of attributes retrieved. The relation contained a million tuples

with each attribute containing 256 characters on an instance of the Postgresql relational

database system version 7.4.1 running on a Sunfire v880 750MHz machine. Notice that

while the marginal cost of retrieving each additional attribute does rise, it still is negligible

when compared to running individual queries for each attribute. The ’step’ in processing

time located at the fifth added column is the result of buffer sizing effects [117]. Thus

it is advisable to retrieve multiple attributes on an opportunistic basis when querying an

unknown database.

A1  | A2  | A3  | A4  | A5  | ...

I11 | I12 | I13 | I14 | I15 | ...

I21 | I22 | I23 | I24 | I25 | ...

I31 | I32 | I33 | I34 | I35 | ...

I41 | I42 | I43 | I44 | I45 | ...

Relation

Iy1 | Iy2 | Iy3 | Iy4 | Iy5 | ...

one pass

T1

T2

T3

T4

Ty

Mediator

Sample for A1

Sample for An

...

Figure 3.4: One pass reduces the time cost as the relation is traversed only once.
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Similarly, all retrieval methods follow an attribute-by-attribute model that requires

multiple passes through a relation. We would prefer a model that would allow us to index

or retrieve from a relation for all attributes at one time, as in Figure 3.4. A possibility is

to use the CASE SQL construct as in Query 3.1. This “un-rolling” of the relation permits

the selection of the highest scoring attribute from the tuple results into a final column that

is then sorted by the aggregate function, in a manner not-unlike the PIVOT operator used

by Fletcher [38].

Query 3.1 Querying all attributes from the relation

s e l e c t t i t l e , name , kos inov ( query , name) as namescore ,
kos inov ( query , t i t l e ) as t i t l e s c o r e ,
case when t i t l e s c o r e > namescore
then t i t l e s c o r e e l s e namescore end as mainscore
from tab l e order by mainscore desc l im i t 10

Since any computation involving one row is negligible when compared with the cost of

retrieving the row from the database, we propose here to pre-compute all of the similarity

scores of the tuple attributes and pre-sort the attribute of the tuple before the results are

fed to the query aggregate functions. However, it was found that in many cases while this

was a theoretically sound idea, database optimisers such as the one in use in the 7.3.1

version of Postgresql would simplify this query into sequential operations which would

actually slow the results instead of speeding them up. While this strategy may no doubt

function for other implementations, we thought that its was not sufficiently generalisable

for inclusion in our system.

Table 3.1 represents all of the sampling methods previously reviewed in Section 3.1.2,

and whether they require the size of the relation a-priori and any problems with the method.

The concern with knowing the size of a relation is that in many cases acquiring this infor-

mation requires traversing the relation itself. As previously stated, the database concerns

itself with storage blocks while the query interface concerns itself in tuples; the database

may not record the number of tuples within a relation. Storage blocks can contain deleted

tuples that have not been purged. While it may be reasonable for the optimiser to estimate

tuple counts based on blocks counts, the query engine requires an accurate count to answer

a query. Hence, if a current count is not stored just acquiring a Gcount(∗) of all tuples will
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Method Problem with use

Read the entire relation Un-scalable
Random (interval) sampling [60, 51] Un-scalable, requires size
Reservoir sampling without replacement [35, 89] Un-scalable, requires size
Reservoir sampling with replacement [111, 110] Scalable (1 pass), requires size
Reservoir sampling with replacement (stream)[89] Result validity unknown
Histogram-error driven sampling [25, 24] Undefined results in sorted attributes
Prediction of unseen distinct value [37, 22, 50, 52] Parameter setting and result validity.
Query based sampling [104] Need to select appropriate query.

Table 3.1: Comparison of various sampling strategies for attributes within a relation.

force the database to read all of the pages allocated to that relation.

In practice, this means that any relation that we attempt to sample is likely to trigger

two traversals of the relation: the first to acquire the tuple count of the relation and the

second to sample the tuples.

Hence, we would like to avoid any solution that requires obtaining the size of the relation

first, which rules out Random sampling, Reservoir without replacement, and Reservoir

sampling with replacement. One approach is to track an error metric, such as Kullback-

Leibler divergence, as a histogram of sampled values is constructed and stop the sampling

as the error converges.

However, this fails on sorted attributes; the histogram may immediately converge for

the first few instance values and immediately terminate. It is possible to add a minimum

bootstrap to the number of instances sampled, the problem then becomes one of parameter

setting against an unknown length relation. In fact, random sampling for a sorted attribute

requires random access, which is not available through most interfaces, including ODBC

and JDBC.

The streamed version of Reservoir sampling with replacement is a possibility, as it

is meant as an anytime algorithm that does not require the relation length to function.

The problem is that it is unclear how long to wait (measured time, number of instances,

reservoir, ...) before we can consider the sample accurate and that randomly distributed in-

stances as assumed. This creates a situation similar to that of the histogram-error method,

in that we now need to set a parameter blindly. A possible work-around could be the use

of an estimator for the number of distinct values remaining within the relation. Some of
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the methods by Fisher et al. [37], Charikar et al. [22], Good and Toulmin. [50] and Haas

et al. [52] lend themselves to this estimation without requiring the length of the relation.

It remains unclear, however, how we could transform this information into a stopping

condition.

One of the conclusions drawn from retrieval experiments is that the sampling does not

need to be statistically unbiased. Because our end-goal is to link the information from the

relation into another database, the only tuples which we really wish to sample are those

that can support a linkage with another relation in a database. Hence, what we are really

concerned about in our sampling is whether the sample is relevant. This notion is hinted

at by Popa et al. [92, 93] where they examine data chasing and by Fletcher [38] who look

for critical instances that must be obtained in order for the operation to succeed.

3.3 Adopted Approach

Based on the issues identified in the previous section, we propose here a unified method

both to retrieve inexact matched instances and to provide limited support to the problem

of locating joins within a relational database.

We may not be in a position to create temporary tables in order to create indexes, or

we might not wish to create an index for a relation that may only be queried a single time.

Thus, it would be preferable to have a retrieval method that operates on any arbitrary

table without an index or pre-processing. We do know that the cost of processing a query

lies in the traversal of the relation itself. It would therefore be in our interest to make use

of a retrieval model where the similarity is computed in-line with the reading of database

pages, hence directly within the query itself.

From our perspective, we only have access to the data through a standardised query

interface that may or may not have caching and optimisation built into the interface.

Furthermore, recall that the database is large and cannot simply be loaded into main

memory. We therefore sample values from the database whenever possible to reduce the

amount of information being processed.

Hence, we make use of a string similarity function as a retrieval scoring function that

does not require the presence of an index to compute q-gram weights. The similarity func-

tion (3.8) proposed by Kosinov [65] compares the number of common q-grams normalised
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to the number of unique grams (CString) within each string.

S =
q ∗ Ccommon

CString1 + CString2

(3.8)

We modified the Kosinov similarity measure by replacing the gram normalisation term

CString2 with the length of the string. This inserts a bias in the formula towards very

long strings with redundant information. However, it also allows us to insert the formula

directly within an SQL statement without the need for an additional join to count the

number of unique grams within the target attribute instance. Equation 3.9 can then be

directly implemented as an in-line function to a simple ranking query.

Ŝ =
q ∗ Ccommon

CString1 + length(String2)
(3.9)

This relies on an assumption that q-grams do not repeat often within the strings being

queried within databases, as we substituted the count of unique q-grams with the length of

the string. Figure 3.5 plots the histogram of the distance between repetition of tri-grams in

an English text. The average distance between repeated tri-grams is 32 characters, which

gives us a certain amount of confidence in our assumption for short textual strings.

The bias needs to be taken into account when making use of the results in the integration

process, however some specific types of data with small repeating sequences, such as DNA

data e.g.: “CCAAGTACCCAAGTAC”, may prove very difficult to handle, but this is not

the case here according to our data assumptions in Section 1.2.1.

The power of this retrieval model also lies in our ability to introduce constraints at

retrieval time without the requirement that any such feature be previously indexed. For

example, we are able to select a specific subset of tuples from a relation with specific values

and search them for specific substrings at the same time.

Using some mathematical properties of basic SQL functions we are able to implement

this query into SQL as in Query 3.2. We can easily limit the number of return results to

a top-k listing, by sorting the results by their computed score. Not all of the instances

retrieved will be relevant to the query, and the value of k is arbitrary. By combining the

results of multiple queries, we are able to create a subset of the data at no additional cost.

A similar method was used by Si and Callan [104] to explore online web databases by
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Figure 3.5: Histogram of the distance in characters between each repetition of a q-gram
within War and Peace [107].

selecting grams to gradually map a web-site’s data incrementally. Bruno et al. [17] used a

similar method driven by query constraints to explore a database. Here the query tokens

have previously been chosen by the user through the initial search query, and in Chapter 4

we explain how to make use of the retrieved instance as a sample of the attributes to

identify possible joins within the database.

3.3.1 Dealing with query terms containing separators

We previously reviewed in Section 3.2.1 how choosing a length of q-gram would affect the

performance of the retrieval. The concern is that when we search for an specific instance,

we may have the wrong q-gram length and have no way of breaking down the data into its

basic components.

While there are no current means of optimising the value of q for a free-form query

term, there is a means of doing so when using an attribute instance as a query term. This

is because we can easily identify patterns within a series of instances from an attribute, as

opposed to a one-off term from a user query.
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Query 3.2 Querying the title attributes from the program relation. Note that the leading
0.0 is necessary for the Postgresql query engine.

s e l e c t t i t l e , 3* (0 . 0 + (1 − pow(0 , p o s i t i o n ( ’ bla ’ in t i t l e ) ) )
+ (1 − pow(0 , p o s i t i o n ( ’ lad ’ in t i t l e ) ) )
+ (1 − pow(0 , p o s i t i o n ( ’ ade ’ in t i t l e ) ) )
+ (1 − pow(0 , p o s i t i o n ( ’ de ’ in t i t l e ) ) )
+ . . .
+ (1 − pow(0 , p o s i t i o n ( ’ ner ’ in t i t l e ) ) ) )
/ (12+ char l eng th ( t i t l e ) ) as s co r e from mythtv . program
order by s co r e desc l im i t 1000 ;

This is done by taking a histogram of the all non-alphanumeric characters within the

target column against all potential character positions. However, in order to be able to

handle strings of variable length, we use relative positions allowing for as many positions

as there are characters in the average length of the instances within the target column. For

example, if the average instance length were 5, we would compute 5 relative positions, and

if the current instance length were 10, we would retrieve the 4th character when generating

a histogram for relative position 2. (Note that this simplifies to absolute positions when a

column is of fixed width.)

For example, the histogram in Figure 3.6 plots the occurrence frequencies of potential

separators for a set of first and last names separated by a comma and space in the manner

of “Doe, John”. Since the rounded average length for the column is 15 characters, we plot

the histogram for relative positions 1 through 15.

From the histogram, we can see that there are many comma and space characters in

the middle of the instances. We now need an algorithmic way to select which of these

candidate separators and locations are actually valid for all column instances.

A candidate separator at some location is invalid if there is at least one instance that

does not include it in that position. For a fixed column width, it would be sufficient

to set a threshold to the number of instances within the column and simply select the

characters and positions that score above it within the histogram. However, for variable

width columns, we must verify the separator template, as it is possible for artifacts of

the data to generate an incorrect separator format. We therefore start by examining the

most common separator/position pairs, and testing whether a template specifying those
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Data: A set of database instances RHS representative of an attributes Aforeign of a
relation Rforeign.

Histogram(Location, Separator) ← 0;1

AvgLength = Avg(Length(RHS));2

Grams ← 0;3

for x = 1 to AvgLength do4

foreach Separator character s in {−, /, , :, ., . . . , } do5

foreach Instance RHS of RHS do6

if charAt(x/AvgLength*Length(RHS))==s then Histogram(x, s)++;7

end8

end9

end10

Threshold = max(∀Histogram);11

SearchKey = ’%’;12

TestSearchKey ← SearchKey;13

repeat14

SearchKey ← TestSearchKey;15

for x = 1 to AvgLength do16

foreach Separator character s in {−, /, , :, ., . . . , } do17

if Histogram(x, s) > Threshold then18

TestSearchKey = TestSearchKey + s;19

else20

TestSearchKey = TestSearchKey + ’%’;21

end22

end23

end24

Threshold−−;25

until Gcount(∗)σAforeign!LIKE TestSearchKey(R
foreign) > 0;26

return SearchKey: A representation of the separator pattern;27

Algorithm 2: FindSeparators(RHS) returns a representation of the layout mask
used by a certain attribute for its instances.

separators in those positions matches all the instances. If so, we augment the template

to include the next most common separator-location pairs and continue until a candidate

template no longer matches all instances.

Algorithm 2 encodes the building of the histograms followed by the search for the appro-
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Figure 3.6: Histogram of possible separators and their locations for a series of separated
first and last names, which would indicate that the comma should deliminate separate
n-grams.

priate separator locations by repeatedly lowering a threshold controlling which separator-

location pairs to include. Using this algorithm, we are able to recover the locations at

which tokenisation should occur. For example, the attribute represented by Figure 3.6

would return a mask similar to “%, %” which would split the sample instance “Doe, John”

into the tokens “Doe” and “John”. These two tokens would then be split if they are longer

that the chosen q-gram value. Thus for a q value of three, the resulting tokens would be

“Doe”, “Joh” and “ohn”.

Compared with a normal tri-gram tokenisation (“Doe”, “oe,”, “e, ”, “, J”, “Joh”and

“ohn”), this method therefore returns fewer search tokens while avoiding unmatchable to-

kens. Because this method forces the tokenisation of the query term at arbitrary locations,

it is difficult to use with indexes as these will not have been prepared for the specific grams,

we may end up with bi-grams or singletons, that will have been indexed. Therefore, we

are only able to make use of this method with non-indexing methods.
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3.4 Experimental Results

In this section we present some experimental performance results for our proposed method

using synthesised data as well as the IMDB database [29] and a dump of a MythTV [54]

database instance.

Data Set Database A T’ Database B # tuples

ISO-8601 Long hand 2038-01-19 03:14:07 ⇒ 2038-01-19T03:14:07+00:00
ISO-8601 Short Date 2026-10-15 05:19:55 ⇒ 05-19-55
ISO-8601 Short Time 1990-05-25 10:17:42 ⇒ 10:17:42 1,516,524
Canadian Short Date 1984-06-05 19:01:26 ⇒ 1984-Jun-05
US Short Date 1987-09-22 05:10:02 ⇒ 09/22/87

Unix login name warren ⇒ rhwarren 8,336
Last name versus full name warren ⇒ warren, robert 701,466

Random person in IMDB Harrison Ford ⇒ full database 2,075,695
Random title in IMDB Blade Runner ⇒ full database 896,117
Random person in MythTV Harrison Ford ⇒ full database 39,418
Random title in MythTV Blade Runner ⇒ full database 25,570

Table 3.2: The different representations of the same instance data used to benchmark the per-

formance of the retrieval methods.

Table 3.2 presents some of the synthetic datasets that we use to benchmark the ability

to retrieve different representations of the same instance data. The first 5 datasets are

date and time representations, as described by Wolf and Wicksteed [114], which are often

problematic in databases. The next two datasets are textual attributes of names that

reference both Unix login names and long hand versions of the same name. Note that not

all of these transformations are complete, some of them are either lossy or are incomplete,

as matching across databases must occasionally occur with incomplete information.

To perform retrieval on either the MythTV or IMDB databases, we randomly choose a

string from the relevant attribute and randomly corrupt 10% of the characters within the

string with a random character. We do this to provide an element of transformation to the

retrieval function that mimics integrating different representation of the same data.

Table 3.3 tabulates the Mean Average Precision results of various retrieval methods

for all the datasets of Table 3.2 with 50 ranked retrieval trials for each dataset, capped at

1,000 results each. Bi-grams were used for the date and time data and tri-grams for the
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Data Type Naive Naive Score TF-IDF Kosinov-modified Kosinov

ISO-8601 Long hand 4.361E-5 0.475 0.241 0.475 0.475
ISO-8601 Short Date 4.717E-5 0.475 0.2183 0.4750 0.475
ISO-8601 Short Time 5.13E-5 0.209 0.128 0.209 0.209
Canadian Short Date 3.948E-5 0.0981 0.110 0.0981 0.0981
US Short Date 4.992E-5 0.0642 0.06111 0.06422 0.06422

Timing 250.62s 3,535.40s 16,918.21s 3,761.66s N/A

Unix login name 0.052 0.396 0.374 0.367 -
Last name versus full name 0.001 0.089 0.052 0.107 0.117

Random cast in IMDB 0.0025 0.95 0.03342 0.9333 0.95
Random title in IMDB 0.0029 0.2526 0.01777 0.3469 0.2526
Random cast in MythTV 0.001 0.975 0.875 0.975 1.0
Random title in MythTV 0.002 0.8994 0.0569 0.899 0.986

Table 3.3: Mean Average Precision scores for the datasets described in Table 3.2 along
with timing data.

other datasets. Half the instances in the date and time datasets were filled with random

numerical values to add complexity to the problem.

The retrieval methods used are:

� Naive: Instance is retrieved if any of the q-grams matches the query; ranking is done

randomly.

� Naive score: Instance is ranked according to the number of common q-grams that

match the query.

� TF-IDF: Instance is retrieved and ranked according to TF-IDF scoring using an

index.

� Kosinov original: Instance is retrieved and ranked according to the original Kosinov

Equation 3.8, for comparison with the modified version. Since this is implemented

in main memory, we do not consider computing time for comparison.

� Kosinov modified: Instance is retrieved and ranked according to the modified Kosinov

distance Equation 3.9.
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A question was whether the replacement of the count of unique grams within Equa-

tion 3.9 with the length of the string would significantly influence results. Furthermore,

we wanted to contrast the performance of the Kosinov method with that of TF-IDF for

large datasets where normalisation would be a problem.

The results of Table 3.3 show that the performance of the Kosinov method is comparable

or better than the TF-IDF within this application, with about a 4.5 speedup. A close

inspection of the results show that the results of the Kosinov modified and Naive score are

very similar for the date and time datasets. This is because the width of the attribute and

the q-gram size are constant, thus over large datasets the denominator is averaged out and

Equation 3.9 simplifies to the Naive score.

These datasets were chosen as representative of the type of real world databases that

we might wish to integrate. However, this comes at the cost of not completely normalising

the search for instances. The collection normalisation provided by the TF-IDF method and

the unique gram count provided by the original Kosinov equation are not present within

our modified method.

We also experimented with the separator finding method of Algorithm 2 to change the

gram generating patterns within search strings. Since it is difficult to determine the proper

value of q for generating q-grams, the algorithm is an interesting way of dealing with this

problem. Its use did correctly identify cases where smaller grams were necessary with the

additional benefit that the lower number of individual grams increased the speed of the

queries by about 20%.

Table 3.4 tabulates the performance of queries as a means of sampling the contents

of a database. We use the results of the user queries presented later in Chapter 6, with

a maximum retrieval limit of 1,000 tuples. Given a sample of tuples from the Myth TV

database, we examined each of the 328 attributes to determine whether the values for that

attribute in the sample are representative of the values for that attribute in the whole

database. We performed a similar test for a sample of tuples and each of the 70 attributes

in the IMDB database. For each attribute, we then calculated a χ2 test score for each of

the sample strategies and counted the number of attributes for which the confidence was

above a given threshold (.90, .95, and .99, respectively).

As expected, the number of attributes that are properly sampled increases with the

size of the random sample. The sampled set created using queries on both IMDB and
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Number of significant samples
Sampling technique MythTV (328) IMDB (70)

.90 .95 .99 .90 .95 .99
10% Random 8 7 3 5 5 5
25% Random 21 13 10 16 16 14
50% Random 38 34 27 20 18 18

Query ‘Harrison Ford, Blade Runner, 1982’ 20 18 18 40 40 40
Query ‘Joan Collins, Star Trek, 1967’ 30 25 25 40 40 40
Query ‘Kevin Bacon, Footloose, 1984’ 36 36 36 37 37 37

Query ‘Kelly Preston, Fear Factor, 2001’ 19 19 14 37 37 37
Query ‘Matt Battaglia, Universal Soldier II, 1998’ 30 25 24 39 39 39

Query ‘Adele Mara, Sands of Iwo Jima, 1949’ 35 32 27 37 37 37

Table 3.4: Total number of attributes that are considered significant samples under different
confidence intervals (.90, .95, .99) using a χ2 test for each sampling approach.

MythTV databases tend to have sharp confidence intervals in that some attribute have

a high significance while the rest have a low significance. This is due to the targeted

nature of the queries, which tend to retrieve a number of instance from specific attributes

that match the queries, while ignoring the others. Conversely, random sampling of the

attribute will retrieve a number of instances from different attributes which gives us a

lower confidence dispersed over all of the attributes. For our purposes of finding key /

foreign key relations, separator identification and/or locating constant value attributes,

both methods are non-critical.

3.5 Conclusion

In this Chapter we reviewed the problems of retrieving similar instances and sampling

from relations of unknown size and distribution. Previous approaches to this problem were

reviewed and their advantages and drawbacks examined. Finally, we proposed a novel

means of performing information retrieval over relational database without the need for

a specialised indexing mechanism. We will see in the next chapter how our approach

also supports the partial discovery of potential joins with a relational databases. The

performance of the retrieval method was found to be comparable to other retrieval methods
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while having a significant retrieval speedup.
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Chapter 4

Search for Joins

In this chapter we describe the approaches related to locating and performing joins of

the relations within a single, remote database. The problem is complex: without schema

information it is difficult to judge the appropriateness of joining two attributes even though

their value sets completely overlap.

Consider the example shown in Figure 4.1 where a pair of relations (program and credits)

may contain attributes with similar contents that can be joined. Even if we assume that

no transformation is required, there exist more than eight potential single attribute join

paths, such as: credits.person = people.person, credits.person = program.chan id, credits.person =

program.manual id, credits.person = program.year, credits.chan id = people.person, etc.

Furthermore, if both the chan id and person attributes have similar (or identical) set

values and distributions, then they may be mutually indistinguishable. Hence, determining

the appropriate join based simply on the data is a difficult problem.

We first review the state of the art, examining the approaches to discovering possible

joinable attributes and to verifying the correctness of the join. We follow with our ob-

servations about the performance of a straightforward method and then propose a novel

method of both discovering possible joins and evaluating their appropriateness.
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person  chan_id  starttime   role...

829     1002     20060302... actor..

304     1021     20060911... direc..

1021    1023     20050102... actor..     

chan_id   manual_id   year   title          starttime...

1002      0002        1982   blade runner   20060302... 

1021      0002        2000   young blades   20060201...

1021      0003        1999   runaway bride  20060104... 

   ...

person  name

304     francis ford coppola 

829     harrison ford

1022    henry ford

...

...

Relation Program

Relation Credits

Relation people

Figure 4.1: For any pair of relations, there are many possible join-able attributes.

4.1 Previous work

There are two basic means of discovering joins between relations. The first is to make use

of a keyword search that identifies specific tuples within two relations and search for a pair

of attributes that can join them together. The technique is to compare the set of instances

contained within each of the attributes and attempt to deduce which pairs of attributes

have a key / foreign-key relationship based on their distinct instance values. The earliest

known work is by Ganguly et al. [42], who looked at methods of estimating the size of

joins from the data and doing so for large databases with skewed distributions. Alon et

al. [6] used an incremental sampling method that iteratively samples from two relations to

predict the size of a joined relation. Goldman et al. [48] dealt with the off-line indexing of

the number of relations that must be joined in order to link both values through a relation.

Most of this work concentrated on computing all possible paths, without pruning or scoring

the list of path based on likelihood.

These works, together with a paper on set similarity by Huhtala et al. [56], provided
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the basis for a paper by Dasu et al. [28] on locating joins within databases. Their Bellman

system primarily makes use of set theory and hash functions to compute the size of joins

and the likely key and foreign key properties of attributes within database tables. They

also proposed the approach of q-gram distributions and q-gram sketches to match poten-

tial attributes to one-another. While the orientation of this research was directed to the

problem of finding joins, the approach mimics strongly most data-driven schema matching

methods [96] in that non-exact matches between attribute instances are also considered.

The BANKS system by Aditya et al. [3] is a set of web tools used to explore disparate

databases within an organisation. Using both the schema and key / foreign key constraints

and a centralised off-line index, the system allows for keyword querying of multiple database

and projections across databases. Resulting tuples are scored according to the keywords

and according to a table normalisation factor that is computed off-line.

Agrawal et al. describe their DBXplorer [4] project, which allows the retrieval of

records from databases using free-form queries. The system requires off-line indexing of

the database, and the index is used to locate all exact instances of the keywords within the

database. All possible join paths are created from the schema data (it is unclear whether

the key / foreign key meta-data is used), so long as all query terms are present within

the tuple. Results are then pruned, but they are ranked according to the join complexity

required to compute them.

Hristidis et al. present their DISCOVER [55] system for keyword searching of databases.

Using specialised off-line indexing for the database contents, the system ranks joins tuples

based on a normalised IR metric. Joins are located according to key / foreign key database

meta-data and only pursued if both the number of required joins is under a user-set thresh-

old and all keywords would be present within the joined tuple.

Kotidis described the VIP system in use at AT&T for data integration problems in

their 2006 paper [66]. The system takes a holistic approach to the location and use of joins

within a database and among databases. While all joined paths are taken into account

by the system, these are independently scored by a number of data quality metrics. For

example, a join path may be evaluated by the fraction of tuples generated that violate

other database’s constraints or the semantic distance of the schema attribute names.

Kimelfeld and Sagiv provided a framework for the theoretical study of keyword searches

from graphs within databases [61, 62]. Their ranking of possible join paths is based on the
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distance between pairs of keywords.

Liu et al. [74] also studies the retrieval of tuples from databases using join searches,

with a variety of different retrieval scoring and normalisation schemes. Whole keywords

are used to search both the schema and the data, and the results are ranked using an

IR-style score, with possible joins located using schema key and foreign key data. The

paper provides several performance comparisons between various normalisation methods.

Unfortunately, the authors’ experimental design did not take into account the validity of

the tuples retrieved and assigned a ground truth based on the presence of the query terms

within the retrieved tuples only.

Most recently, Mayssam et al. [101] produced the KITE system, which can be used

to retrieve tuples from multiple relational databases using keywords. Off-line processing

is used to index terms within all databases and to provide normalisation to the searches.

Its approach to pruning the number of possible joins between relations is one based on a

cost model which is assumed to be provided by the database optimiser. However, a user

defined benefit function is also assumed to be provided to offset the costs of different join

strategies. Furthermore, only networks of joined tuples that contain all of the search terms

may be returned as answers, further pruning the results.

Because the method does not depend on the knowledge of keys and foreign keys, the

authors attempted to add a validation of the joined tuples by using a schema matching

technique called Simflood [78]. This improved the precision of the returned results from

26-64% to 80-96%. Several different strategies were proposed for the generation of the

results, each enforcing a different tradeoff between the complexity of the joins and the

number of tuples being returned.

A concern is that all of these approaches return a scoring or ranking result that can

compare potential joins, but gives no indication of confidence on the appropriateness of the

join itself. In most of these systems, the generation of reasonable joins is based on the use of

threshold factors, such as: the minimum number of joined tuples, the maximum number of

joined tuples and the maximum number of joins performed. Some of the systems described,

such as KITE [101] and DBXPLORER [4], are based on mitigating the computational load

of performing the join, yet none of these constraints address the problem of the validity of

performing the join.
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Name Uses schema Uses Join scoring Join Keyword
schema keys pruning search

BANKS Yes Yes IR No Some Keyword

DISCOVER No Yes IR Threshold All keywords

VIP Yes Yes Various Various Keyword

KITE Yes No User / database Simflood Word lookup
complexity Simflood Word lookup

Liu et al. Yes Yes IR None Keyword, phrase

DBXPLORER Yes ? Complexity No All keywords

Kimelfeld et al. N/A N/A Distance N/A N/A

Table 4.1: Characteristics of previously known systems used to locate joins within
databases.

4.2 Research Problems

The problem of finding joins differs from matching in that matching is usually performed

across databases while joins are performed within databases. Intuitively, we know that

joins within the databases should have a higher standard of quality because the identifiers

that form the key and foreign-key relationships will match exactly.

In our work, we also use a free-form query to allow the user to specify information that

lies within his integration interest. We have already reviewed in Chapter 3 the elements

that are required to query a database for free-form queries. Here we review how the results

from a free form query can be joined into a single relation.

Most of the current methods concern themselves with predicting which attribute is the

key or foreign key within the join and the number of tuples possibly generated. The actual

detection of joins is done by calculating the overlap between the two sets of attribute

instances. However, the metrics used to assign validity to a certain join is done by simply

assigning a minimum and maximum number of tuples generated through the join. The un-

addressed question is how to assign thresholds when we do not know what is appropriate

for this database.

Our solution is to search potential joins for pairs of attributes known to be linked

through a relation. Hence, not only do we locate joins within the database, but we now en-

sure that the tuples created match those that are already present within another database.

That is, we rely on relation information from another database to search for the join rather
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than merely examining the overlap between the two column values.

The second problem is how to locate potential joins when representative sampling of

the relations within the database is difficult to achieve. We circumvent this problem by

using all of the retrieved instances from each relation that had already been searched to

form a sample skewed to the query terms. The comparison of these skewed samples is then

used to locate joins.

We note that for illustrative purposes only we present schema information within di-

agrams and tables, despite this information not being used at the algorithmic level for

decision making. Also, the reader will notice many redundant operations that would be

combined within an implementation, as well as unmentioned caching opportunities. We

refrain from doing so here for clarity.

4.3 Basic methodology

As mentioned in Chapter 1, we require the user to enter a trial query that represents infor-

mation of interest to the user. From a database integration perspective, this query allows

the integration to be localised within the foreign database Dforeign, without attempting to

integrate relations that are judged irrelevant.

An example query, Q, could be “Blade Runner Harrison Ford Actor” that references a

particular actor in a movie. For example, this query would focus our integration efforts on

the movie title and credits section of a database, and perhaps leave out most of the movie

review discussion and reviewer user information relations.

We use this simple keyword term query to locate the specific attributes of interest

within both the foreign database (Dforeign) and the local database (Dlocal).

We start by querying the table Rlocal, from our local database, for the user’s query

terms Q. Because this is a known, local database of our own design, we also make the

assumption that we can match attributes to query terms and that a tuple can be retrieved

that matches most, if not all, of the query terms. Through this method, we also resolve any

ambiguous n-to-1 relationships, so that the two query terms “Harrison Ford” are known

to refer to the same attribute. To ensure that the terms are valid, query terms that are

not found within the local database are simply ignored.
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Data: Relation Rlocal from database Dlocal and user query set Q.

MAP ← 0 /* Initialise query term to attribute map. */1

T local−ex ← 0 /* Initialise example tuples holder. */2

foreach Qi in Q do3

Find Alocal
x that matches Qi in Rlocal;4

if !found(Qi) then5

/* Remove query terms that we cannot find in the local database. */

Remove Qi from Q;6

else7

/* Store mapping from this query term to one or more local

attributes. */

MAP ← map(Qi → Alocal
x )8

end9

end10

/* Retrieve the local tuples for the user query. */

T local−ex
1 ← π∀Alocal∈MAP (σ∀AlocalMAPQ (Rlocal));11

for x = 2 to M do12

T local−ex
x ← π∀Alocal∈MAP (σ∀T local=T local

rnd
(Rlocal));13

end14

return Query term to attribute mapping MAP, sampled set of tuples from local15

database T local−ex with first tuple matching user query Q;

Algorithm 3: Find mapping of user query to local database and retrieve additional

sample of tuples to validate any potential joins.

This process is depicted in Algorithm 3, which returns the attributes matching each

query term and select other tuples (T local−ex) to verify the validity of the joins being

considered. The number of example tuples retrieved and the sampling method are not

critical; we select 10 tuples at equal intervals. Another method that we specifically did

not pursue, was the re-querying of the foreign database Dforeign using the sampled values.

While additional searches with different instances would be useful to validate the networks,

this would come at the cost of searching the database another j∗i times more than the cost

of simply validating potential joins through a localised query of the join with the sampled
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values.

Data: A user query Q, foreign database relations Rforeign.

Iquery
i ← 0;1

Iattrib
jl ← 0;2

for j = 1 to J do3

/* Process all of the database at least once. */

for l = 1 to Lforeign
j do4

for i = 1 to I do5

/* Get entire tuple with top-k query of attribute. */

T foreign match
jli ← query top-k Rforeign

j πAforeign
jl top-k Qi;6

if count(substr(T foreign match
jli ,Qi)) = k then7

large(Qi) ← true;8

end9

Iquery
i ← Iquery

i ∩ I foreign match
jli∗l ;10

/* Assign retrieved data to query term. */

for x = 1 to Lforeign
j do11

/* Opportunistically, retrieve instances for matching. */

Iattrib
jx ← Iattrib

jx ∩ I foreign match
jli∗x ;12

end13

end14

end15

end16

return Set Iquery
i of all instances matching query Qi and set Iattrib

jl of all known17

instances of attribute Aforeign
jl .

Algorithm 4: Retrieve instances from all of the attributes and relations for each of

the query terms.

We then query every attribute from every relation within the foreign database Dforeign

for each term Qi within the query Q, as shown in Algorithm 4. We make use of the

retrieval method as described in Chapter 3.3 to retrieve the top-k most similar instances.

We initially set k to an arbitrary 1,000 tuples, but the choice of this value is reviewed later

in Chapter 6. We do add one caveat: should the query term retrieve k instances that are
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exactly the same or substrings of the query term, we mark it as Large. This indicates that

the query term is too common to use in a join network immediately, we must wait until

we can effectively re-query the database with another partial network for the query to be

effectively used.

For I query terms, top-k retrieval gives us a maximum number of k ∗ i scored instances

that we rank to find the instances most likely to be of interest to the user. But since we

must scan the entire database at least once to find those terms, we also use the query

results to build a skewed sample, or directed model, of each individual relation attribute

within the foreign database.

As mentioned in Chapter 3, this provides an elegant solution to the problem of sampling

relations and attributes. Whereas sampling earlier would have been done as a separate step

in which relations would have been sampled, we piggy-back onto the retrieval operation to

obtain a directed, biased sample using the user query itself. It is also a sampling method

that does not require any knowledge of the number of tuples within the relation, which is

an operation that can be expensive in certain circumstances.

Data: Set Iattrib
jl of all known instances of attributes Aforeign

jl .

SIM()→ 0 foreach pair { (j1,l1), (j2, l2) } do1

a, b← 0;2

a← Iattrib
j1,l1 overlapIattrib

j2,l2 ;3

b← Iattrib
j1,l1 cosine Iattrib

j2,l2 ;4

sim(Iattrib
j1,l1 , Iattrib

j2,l2 ) = a+b
2

;5

end6

Sort SIM() on score;7

return Ranked set SIM() of similarity between all attributes in Dforeign.8

Algorithm 5: Compare the sampled distribution for each relation pair and rank

them from most similar to least similar.

Although, the sample is not a representative sample, we do obtain k instances for i

query terms for each attribute. This is sufficient for us to use attribute matching and join

search algorithms using this k ∗ i set of instances.

Intuitively, we know that some attributes will have fewer than the maximum of k ∗ i

instances, as some query terms will be unmatchable to the attribute contents (e.g.: ‘arnold’
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can never match a numeric attribute). These smaller, or empty, sets are still useful: their

distribution will be substantially different to that of large sets and prevent their match.

As reviewed in Algorithm 5, these set values are compared for each attribute pair and

a score is computed. By ranking the score for each pair of attributes, we can obtain an

order with which the potential join relations should be searched. The actual method to

compare the samples is not critical, and we use an aggregate of a cosine similarity test and

value overlap similarity test to assign similarity. Furthermore, attributes that have less

than three distinct values are placed at the tail of the similarity queue. This is done to

prevent these columns from matching every possible join conditions.

We then rank Iquery
i , the set of the instances that have been retrieved for each search

term Qi, based on their normalised Kosinov score (see Chapter 3.3), as in Algorithm 6.

This is done so that the tuples that are likeliest to be relevant to a query term are matched

against each other for a potential join first.

Data: Set Iquery
i of retrieved instances for query Q.

NET ()← 0;1

foreach I in I do2

Sort Iquery
i according to Kosinov score;3

NET(Qi)← distinctRforeign,Aforeign,Iquery
i ;4

end5

Sort NET () according to top-k Kosinov score.;6

return Network NET (), sorted according to top scoring instances.7

Algorithm 6: Find highest scoring instances for each query and rank all queries

according to their highest instance score.

The specific relation and attribute from which these instances were retrieved is termed

a “triplet” and together with the ranking of the specific instance allows us to locate a

distinct area of the database to search. In Table 4.2 for example, we list possible matches

for the query terms “harrison” and “blade”, query terms Q1 and Q2 respectively.

Because the triplets are ranked according to their similarity to the query term, we can

use this as an ordering with which to search different areas of the databases for the correct

attribute and instance. The first query term “harrison” is meant to refer to the actor

“Harrison Ford”, but also matches another actor “Harrison Paul” as well as a movie title
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# Q1 Rel. Attr. Instance Score
1 Harrison People Person Harrison Paul 1.02
2 Harrison People Person Harrison Ford 1.02
3 Harrison Program Title Meet the Harrisons 0.88
4 Harrison People Person Harris Kevin Lyle 0.48
. . . . . . . . . . . . . . . . . .

# Q2 Rel. Attr. Instance Score
1 Blade Program Title Blade Runner 1.02
2 Blade Program Title Blades 1.02
3 Blade People Title John Blade 0.98
4 Blade Reviews Text ...the blade then... 0.48
. . . . . . . . . . . . . . . . . .

Table 4.2: Example results from a retrieval.

“Meet the Harrisons”. Therefore we would first search for a join under the assumption

that the proper mapping for Q1 would be the relation People, the attribute Person and

instance “Harrison Paul”. Failing this, we would then try instance “Harrison Ford” and

then relation Program, attribute title, instance “Meet the Harrisons” and so forth. The

results of all possible joins of Table 4.2 would be similar to those listed in Table 4.3.

Q2 Q1 Join
Rel. Attr. Instance Rel. Attr. Instance possible?

Program Title Blade Runner People Person Harrison Paul 6=
Program Title Blade Runner People Person Harrison Ford =
Program Title Blade Runner People Title John Blade 6=
Program Title Blade Runner Reviews Text ...the blade then... 6=

. . . . . . . . . . . . . . . . . . . . .

Reviews Text ...the blade then Program Title Meet the Harrisons 6=
. . . . . . . . . . . . . . . . . . . . .

Table 4.3: Different possible joins of the selections in Table 4.2 being attempted.

The scores of the instances are also used to provide an order for the query terms to be

used within the search. This is done so that when we begin searching for joins, we do so

using the queries for which instances are the most similar to the original query term Qi,

in a manner similar to the work of Brin [16] in finding connections between sets of query

terms in web-pages. We call one or more query terms and their associated triplet, which

can be linked by a join, a “network”. Figure 4.2 shows an example of networks for the

query terms “harrison”, “blade” and “actor”. Note that it is the specification of specific

triplets that constrains the appropriateness of a join. The relations binding the triplets

ensures that only joins that can assign the correct values to the instances are kept. The

approach of having a network reference an attribute, tuple or specific instance is not unlike

the approach of Srivastava and Velegrakis [105], however whereas they make use of the

complete meta-data we only make use of the relation.

As an example, a join between the query term “blade” (Network 4) and the query

term “Ford” (Network 1) is identified, because both of the tuples they point have an

attribute whose value is common. In general, a join is deemed to be appropriate when
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Figure 4.2: Several different join possibilities exist for each possible assignment of Qi.

a shared attribute value makes it possible to relate both specific tuples through the join.

Conversely, it is not appropriate to directly join query term “blade” (Network 4) with

query term “Actor” (Network 5), as none of the attribute values for either networks allow

them to form a join.

We use the word “appropriate” and not the word “correct”. The join may appear

correct because it links both query instances properly, but the specific attribute providing

the join may do so serendipitously. We will therefore need to further verify these joins at

a later time to increase the likelihood that they are meaningful.

We begin the search for joins that are appropriate with the highest ranked query term

according to Iquery
i . The query term ranking does not guarantee that the first query-triplet

mapping will be correct, but it chooses the query with the likelihood of obtaining the

correct triplet the soonest.
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Data: Set NET () of all possible networks, where NET(Q(...)) contains all of the

potential networks linking one or more queries Q(...).

NEWNET ()← 0,LARGENET ()← 0;1

for a = 1 to size(NET ()) do2

if Large(NET()a) then3

LARGENET ()← NET()a;4

end5

NEWNET ()← NET()a;6

end7

done = false;NET ()← NEWNET ();8

while done do9

done = true;10

for a = 1 to size(NET ()) do11

for b = 2 to size(NET ()) do12

for x = 1 to size(NET()a), y = 1 to size(NET()b) do13

if (Aforeign
a ! = Aforeign

b ) then14

Join = NET()ax 1 NET()by;15

/* Join must exist, match at one tuple of T local−ex and

not expand the number of tuples. */

if (Score(Join) > 0) ∧ (count(Join) > 0) ∧ (count(Join) <16

max(count(NET()ax),count(NET()by)) then

NEWNET ()← Join;17

done = false;18

end19

end20

end21

end22

end23

end24

NET ()← NEWNET ();25

return Sets NET () and LARGENET () of all possible networks.26

Algorithm 7: Initial search for simple query to query joins. Note that the Score

function is detailed in Algorithm 11 at the end of this chapter.
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We direct the search as a concurrent search for instances that are similar to the query

terms and for pairs of attributes that can function as joins. The intuition behind this

strategy is that most database joins are simple key / foreign-key relationships. Join paths

requiring one or more intermediate relations are to be expected, however it is likely that

by finding the simple joins first our constraints will be more effective at locating complex

joins.

To locate simple joins, we enumerate every pair of triplets that can join any two query

terms. Since the tuples were entirely retrieved along with the similar instances in Algo-

rithm 5, we can perform this operation within the integrator’s main memory. This process

is described in Algorithm 7, where the triplets of each possible pair of query terms is

checked for a possible joining attribute.

Each of these operations involves finding common instance values between both queries

to enumerate all known appropriate joins. The resulting set of networks described in

Algorithm 7 would contain networks similar to NET(harrison, blade) = Aforeign
j=people,l=movie id

1?=? Aforeign
j=program,l=movie id for Q1 and Q2 and resembles the process depicted in Figure 4.3.

To enforce a measure of correctness on the proposed join, we make sure that the instance

values within each potential join can only be one of those previously retrieved. Hence, as

in Figure 4.3, we search for a pair of join attributes that allow the attribute instances

of Table 4.2 to be joined across both relations into one of the appropriate answers of

Table 4.3. Searching for the network would entail a query similar to Aforeign
j=people,l=movie id 1?=?

Aforeign
j=program,l=movie id where Aforeign

j=people,l=person = ‘Harrison Paul’ ∨ ‘Harrison Ford’ ∨ ‘Meet the

Harrisons’ ∨ ‘HarrisKevin Lyle’ ∧ Aforeign
j=program,l=title = ‘blade runner’ ∨ ‘blades’.

Therefore, we would look for a pair of join attributes from both networks. In this case,

the top two potential instances of person would be “Harrison Ford” or “Harrison Paul”

and the instance of title within the second relation must be “Blade Runner”. This gives us

a solution that identifies the appropriate join path, as depicted in Figure 4.3.

Algorithmically, we need several other conditions to deem a potential join as being

appropriate, as several spurious potential joins will likely be present. We add two conditions

for a potential join to be considered appropriate: the join may not create more tuples than

the largest parent network and must include at least one additional tuple from T local−ex,

according to Algorithm 11.
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Figure 4.3: Search for a possible join.

The intuition from this requirement is that the new network should not generate more

ambiguity. Hence, if the proposed join of both networks generates more tuples than either

network did, then the constraints have been relaxed instead of restricted and the join is

inherently wrong. The sampled tuples provide a measure of testing whether the join is

random or likely to be appropriate; if the join can support one local support, it should also

support at least another one. We can score each proposed network by counting the number

of sampled tuples that can be matched through the join. However, we do not do so at this

point since the initial joins created are too simple for the scores to mean anything.

When a pair of networks has been selected as a joined pair, we continue the search for

additional join attributes by using the remaining unattached networks, as in Figure 4.4.

Since the previous query provided us with several sampled relations that match the previ-

ously selected joined attribute, we can directly query the next candidate relation looking

60



for the correct joinable attribute. This prevents us from having to perform a complex join

across relations that were previously queried. The process continues until we have joined

all of the networks or until we have exhausted the combinations of networks that can be

joined.

Harrison Ford Blade Runner

Harrison Ford
Blade Runner

Harrison Ford 2  3 Blade Runner   1982   20060403...

Network 3

Actor

Lead Actor

Lead Actor 2

Network 4

qi

Ii

A1 A2 A3  ...

Network n-1

qi

Ii

A1 A2 A3  ...

Network n

Figure 4.4: We iterate through the rest of the joinable attributes looking for additional
networks to join.

We intentionally set the large networks aside in Algorithm 7. This is done because

the large networks are unlikely to capture all of the appropriate instances that are similar

to a query term. Therefore in a second process, Algorithm 8, we re-visit these networks

but do so with the relational database. Since the search is done directly on the database

management system, we can now afford to make use of these networks while relying on the

selectivity of the smaller networks to test for appropriate joins.
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Data: Set NET () and LARGENET () of all possible networks, where NET(Q(...))

contains all of the potential networks linking one or more queries Q(...).

NEWNET ()← 0;1

for a = 1 to size(LARGENET ()) do2

for b = 1 to size(NET ()) do3

for x = 1 to size(LARGENET()a) do4

for y = 1 to size(NET()b) do5

if (Aforeign
a ! = Aforeign

b ) then6

Join = LARGENET()ax 1?=? NET()by;7

/* Join must exist, match at one tuple of T local−ex and

not expand the number of tuples. */

if (Score(Join) > 0) ∧ (count(Join) > 0) ∧ (count(Join) <8

max(count(LARGENET()ax),count(NET()by)) then

NEWNET ()← Join;9

end10

end11

end12

end13

NEWNET ()← NET()b;14

end15

NEWNET ()← LARGENET()a;16

end17

NET ()← NEWNET ();18

return Sets NET (), NEWNET () of all possible networks.19

Algorithm 8: Search for additional networks that do not discriminate well within

local results.

Since much of the low-hanging fruit has already been combined into networks by the

integrator, we can mitigate the potential cost of querying the database itself with the

constraints imposed by known networks. Hence, while querying a large network might be

expensive in the number of tuples involved, only a fraction of these will meet the require-

ment of a join with another network with specific instance values of specific attributes.
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The constraints imposed by the smaller networks also provide information to the database

query optimiser as to the optimal way to search for the join.

Furthermore, we note that we can often process multiple proposed joins within the

same query, as presented in Query 4.1. This allows for the testing of multiple hypotheses

while reducing the number of times the relations are traversed by the database.

Query 4.1 We can make direct use of the database itself to search for multiple join
possibilities concurrently.

Se l e c t R1 . person , R1 . r o l e i d , R1 . movie id , R2 . t i t l e , R2 . date ,
R2 . movie id , R2 . year from R1 ,R2 where

(R1 . movie id=R2 . movie id OR R1 . movie id=R2 . date OR
R1 . r o l e i d=R2 . year . . . ) AND ( R1 . person=’Harr i son Ford ’ OR
R1 . person=’Harr i son Paul ’ . . . ) AND (R2 . t i t l e =’Blade Runner ’
OR R2 . t i t l e =’Blades ’ )

By inspecting the results of the query we are able to determine which of the possible

join pairs actually functioned as joining attributes. The ability to search for multiple

hypothetical joins also allows us to locate multi-attribute keys where multiple attributes

are needed to form the join relations. However, this has the tendency to generate join

conditions which include key / foreign key conditions that are not useful, such as those

containing constant value attributes. Therefore, we make use of Algorithm 9 that verifies

the validity of all of the conditions within the join.

Data: A network NET() who’s join conditions are to be pruned.

foreach 1∈ NET() do1

foreach Path ∈1Path1,...,Pathn do2

if Gcount(∗) ( 1 ) = Gcount(∗) ( 1 −Path ) then3

Join = Join - Path ;4

end5

end6

end7

return Network NET() free of unnecessary join conditions.8

Algorithm 9: Iteratively make sure all of the key / foreign key relationships are

needed and not tautaulogies on constant value attributes.
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Up to now, all of the joins being considered were assumed to be network to network

joins, without intermediate relations linking them. The condition we use to determine

whether to continue or terminate the search is whether we have obtained a network that

joins all of the active query terms into a projection. If one or more of these networks are

available, we terminate the process and proceed to translate the relation.

Algorithm 10 shows both this decision condition and the search for networks of increased

complexity. We consider all possible joins at a distance of 1-relation, then 2-relations and so

forth. The algorithm is very similar to Algorithm 8 where we attempt to merge networks

until we exhaust the search space. However in this case, we compute all of the paths

between the attributes of both networks through one or more intermediate relations.

We compute the ordering of the path generation using the similarity scores computed

previously in Algorithm 5, grouping attribute-to-attribute paths by relations so that we

may use the same aggregate search described for Query 4.1. We compute all possible

networks for a given join distance and terminate only when a complete network has been

found.

The final result is a query of the foreign database that logically joins all of the relations

necessary to the integration process, as in Figure 4.5. This large virtual relation then

remains to be translated to the relation Rlocal within our local database.

4.4 Experimental Results

In this section, we review the performance of two schema matching methods used to predict

key / foreign key relationships within a database. Experiments making use of the network

finding method proposed will be reviewed in Chapter 6, at the end of the thesis.

Table 4.4 shows the performance of both retrieval and sampling methods as a means

of providing a sampled set that can be used to locate joins. We use a set of randomly

perturbed titles from the MythTV database as with the previous experiment. The Mean

Averaged Precision (MAP) score is calculated from the ranked list of possible joins returned

by the method, scored against the list of key / foreign key relationships within the MythTV

database. The two methods here are the set ressemblence method (value overlap) reviewed

by Dasu et al. [28] and cosine similarity between the sets of attribute instances.

Overall, the results of Table 4.4 represent an interesting decision to be taken by the
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Figure 4.5: The final result of the join search is a solution that links the different queries
into a unique table.

Retrieval Method MAP (Overlap) MAP (Cosine)
Kosinov modified 0.003167 0.003720217
10% sampling 0.000324 0.0005634
all data 0.000775054 0.000505279

Table 4.4: Mean Average Precision scores for possible key / foreign key rankings with the
MythTV database.

designer. The overlap method tends to identify ‘perfect’ key / foreign key relationships

within the database. These tend to favour numerical identifiers with a restricted set of

values, and while the results of Table 4.4 favour it, it tends to return a large number

of false positive. On the other hand, the cosine method of locating key / foreign key

relationship will favour attribute pairs that have a good contextual or similarity linkage

that is evident in the returned results.
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For this reason the overlap method may be a better choice for attribute mapping appli-

cations instead of key / foreign key relationship searches. In either case, the performance

of the join predictors is very poor. Both of these methods are meant for schema matching

and we make use of them to prioritise our search with a likelihood indicator.

These results are consistent with some of the results by Bohannon et al. [14]. They

reported that attribute matching algorithms could differentiate between related attributes

such as sale price and total price because of patterns in the prices, such $5.99, $2.99 or $6.00

and $10.00.

In our case, we obtained similar results in locating contextual similarities between

attributes, such as human readable descriptions or timestamps, but this was a disadvan-

tage. Since we were attempting to locate key / foreign key relationships within the same

databases, and which are all numerical in nature, these semantic relations served only to

clutter our search space.

4.5 Conclusion

In this chapter we reviewed algorithms that search for joins within a foreign database.

Our approach does not require a specialised index of the database contents, nor schema

information, and minimises the amount of information retrieved from the foreign database.

Previous work concentrated on reducing the number of possible joins and time of compu-

tation; from our survey of previous work, we believe that the enforcement of a correctness

concept during the search for joins is novel work.

With a global relation extracted from the foreign database, we now turn our attention

to the problem of translating the relation to the same structure that is in use in our local

database.
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Data: Set NET () from Algorithm 8 and ranked similarity scores SIM() for all

attribute pairs.

distance← 1;1

done = false;2

while (done) ∧ (!∀active(Q) ∈ NET ()) do3

done = true;4

for a = 1 to size(NET ()) do5

for b = 2 to size(NET ()) do6

for x = 1 to size(NET()a), y = 1 to size(NET()b) do7

foreach Path in = SIM(x, y) of length distance do8

if (Aforeign
a ! = Aforeign

b ) then9

Join = NET()ax 1 Path 1 NET()by;10

if (Score(Join) > 0) ∧ (count(Join) > 0) ∧ (count(Join) <11

max(count(NET()ax),count(NET()by)) then

NEWNET ()← Join;12

done = false;13

end14

end15

end16

end17

end18

end19

NET ()← NEWNET ();20

if !∀active(Q) ∈ NET () then21

done = false;22

distance + +;23

end24

end25

return Set NET () of currently known networks.26

Algorithm 10: Attempt to find networks that have intermediate relations within

the joins.
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Data: T local−ex a set of additional tuples from Rlocal mapped to Q, NET() a

network that joins several attributes of Rforeign through Q.

for m=2 to M do1

c = Gcount(∗)( σ∀Q∈(NET∧MAP) ( σQ 7−→Aforeign ( σAlocal 7−→Q )));2

if c > 1 then3

s + +;4

end5

end6

return s the number of example queries that support this network.7

Algorithm 11: Score(Net) Score the potential network based on the number of

additional sampled relations that it can successfully retrieve.
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Chapter 5

Schema translation methods

Locating joins is about discovering the structure of the database and projecting it into a

single relation. This relation must then be integrated with the relation within the local

database. There are two basic elements to the process. Matching is the first, where

attributes from each relation are linked together. The second deals with the translation,

or transformation, of the data from one representation to another between each set of

attributes.

Figure 5.1 is an example of the type of problem that we wish to solve. The composite

relation, which we term Rjoin, from the foreign database Dforeign is similar to the relation of

the local database Rlocal, but not all of the same attributes are present: Rlocal contains new

information, such as instance “2:00”, that is not present within Rforeign. Furthermore, not

all of the data representations are the same: Alocal
role may refer simply to an ’actor’ within

a movie, while Rforeign
role makes a ’lead actor’ / ’actor’ distinction that is unavailable within

Rlocal.

Similarly, multiple standards exist to represent the same information in a concise for-

mat, and understanding which representation is in use takes time. For example, the Open

Group lists 22 locales, each with its own typeset standard for date and time information

[87]. In this chapter, we focus on the location of the matching attributes and their proper

translation from one representation to another.

This is why we are investigating methods that can automate the search for matching

information within a database schema and infer a mechanism for the translation of the
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Figure 5.1: The attributes projected by all located joins must be matched and translated
against the local relation Rlocal.

data from one representation to another. We have in mind situations where databases

are numerous, large and complex and where partial automation of the process, even when

computationally expensive, is desirable.

In particular, we wish to find a general purpose method capable of resolving complex

schema matches made from concatenating substrings from columns within a database.

While heuristics can be attempted for simple translation operations such as “concat (first-
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name, lastname) into fullname,” no general purpose solution has yet been devised capable

of searching for and generating translation procedures.

We begin by reviewing the work previously done in this area as well as some of the open

problems. A generalised solution to the problem of translations is proposed along with a

process that makes use of these new methods to further support database integration. The

chapter closes with a number of experiments attempting to validate the approach.

5.1 Previous work

The work in this area has concentrated so far on the matching aspects of database inte-

gration with little work done on the translation of the instances. This is partly due to

a certain deductive bias in database integration work and to the inherent complexity of

creating generalisable algorithms for arbitrary translations.

Rahm and Bernstein present a general discussion and taxonomy of column matching and

schema translation [96, 95]. They classify column matchers as having “high cardinality”

when able to deal with translations involving more than one column. These types of

matchers have been implemented on a limited basis in the CUPID system [75] for specific,

pre-coded problems of the form “concatenate A and B.”

Recently, Carreira and Galhardas [20] looked at conversion algebras required to trans-

late from one schema to another, and Fletcher [39] used a search method to derive the

matching algebra. Embley et al. [32] explored methods of handling multi-column map-

pings through full string concatenations using an ontology-driven method.

The IMAP system, by Dhamankar et al. [30], takes a more domain-oriented approach

by utilising matchers that are designed to detect and deal with specific types of data,

such as phone numbers. It also has an approach to searching for schema translations for

numerical data using equation discovery.

As a means of abstracting away from the specific data being processed, Doan et al.

proposed “format learners” [31]. These infer the formatting and matching of different data

types, but the idea has not been carried forward to multiple columns. This is one of the

few known works that concentrate on the translation of the instance data instead of high

level translation of schema attributes.

These works bring forth the major issue in instance and schema translation in that
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all of the previous works have taken a deductive approach to the problem. All possible

translations are assumed to be available and the only research problem is to select the

‘correct’, pre-coded formula to translate an attribute to another. Doan’s and Dhamankar’s

works are the only two instances of work that is known to take an inductive approach to

the problem: Dhamankar implements this for numerical data with equation discovery and

Doan proposes this for format specific data. Beyond these two works, no other instance

translation solution attempts to infer the actual transformation.

In this work, a search approach is also used to find translations formulas that are

applied to string operations. However, unlike IMAP, the record instances are not assumed

to be pre-matched from one database to another. This makes the problem more difficult

in that a primitive form of record linkage must be performed as the translation formula is

discovered. Most of the very early work in this area was done by Newcombe et al. [84] and

Fellegi and Sunter [36] and most recently done by Winkler [113]. More recent approaches

include the Autoplex Bayesian linkage model proposed by Berlin and Motro [12] and the

statistical relational learning proposed by Getoor et al. [45].

This method attempts to solve the problem of schema matching and translation from an

instance-based approach, where the actual values from individual columns are translated

and matched across databases. This is done within the context of database integration,

and is intended to be incorporated as part of a larger database integration system, such as

IMAP [30], CUPID [75] or Clio [116].

For example, the model assumes that a specific ‘aggregate’ column and a number of

potential ‘source’ columns have been tentatively identified by the database integration

system. Not all of the suggested source columns may actually be related to the target

column and that a data-driven translation formula may discover a translation which is not

intended.

The objective is to provide the integration system with possible translations formulas,

with the understanding that some of these may be discarded by a higher-level component

of the integration system in favour of another solution. Initially, the generalised solution to

the problem is presented and then sub-solutions to the global database integration method

are presented.

The approach has been developed to be as generic as possible, assuming only that the

relational databases provide an SQL facility that can be accessed through an interface.
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As with the work of Koudas et al. [67], we have restricted ourselves to implementing our

algorithms with basic SQL commands in an attempt to manipulate the data within the

database systems. This is necessary to prevent the integration system from using excessive

amounts of memory when dealing with large, complex databases and from over-burdening

the network system.

5.2 Research problems

Dealing with uncertainty in database translation is difficult, and the research projects have

concentrated on suggesting solutions or providing support to human decision makers. No

fully automated solution exists so far, and it may not be possible for a single algorithm

to handle all possible types and models of translations. Record linkages and probabilistic

linkages have helped with the problem of matching attributes and linking records, but

these are probabilistic in nature and do not always provide mappings between the different

attributes (some require the linkages to be provided).

Besides the 1:1 matching, lookup tables and the mathematical equation finding of IMAP

and very simple concatenation, no previous work attacks the representation and inference

of a translation.

The method should be capable of discovering a solution for problems as diverse as

unknown date formats, unlinked login names, field normalisations, and complex column

concatenations. Thus, the objective is to find a generalisable method capable of identi-

fying complex schema translations of the sort “4 leftmost characters of column lastname

+ 4 rightmost characters of column birthdate 7−→(n:1) column userid” or translating dates

from one undocumented standard to another, e.g.:“2005/05/29 in database D 7−→(1:1)

05/29/2005 in database D′.”

There exist many situations where data must be transformed from one representation

to another. The problem lies in the selection of a translation inference engine that is

generalisable to most problems.

73



5.3 Proposed approach†

To find a mapping requiring translation, this novel technique searches for a translation

formula that will map the instances of one or more attributes to the instances of another

attribute within another database. The specific types of problems that are to be solved

are those where only one translation formula is necessary to provide mappings between a

specific set of instances.

We first describe the worst case scenario of a translation between one attribute of a

database and many other attributes from the relation of another database (An n:1 trans-

lation). Let us assume that a specific ‘aggregate’ target attribute (Atarget) attribute and

a number of potential ‘source’ attributes (Asource) have been tentatively identified by the

database integration system. The ‘source’ and ‘target’ labels are used for convenience and

do not necessarily indicate the direction of the data flow. It is also accepted that not all

of the suggested source columns may actually be related to the target column.

Let there be a relation Rsource, named the source relation for convenience, with at-

tributes Asource
1 , Asource

2 , Asource
3 , . . ., Asource

n . Similarly, a second relation Rtarget, named

the target relation, is defined as a single aggregate attribute Atarget. The tuples of Rtarget

and Rsource are available for retrieval, but no example translations are provided, nor are

individual tuples of Rsource linked to their Rtarget equivalents.

The emphasis is placed here on the translation of instances with different represen-

tations, requiring only a single translation formula. Hence, while one database might

represent time as “12:04:02”, another might opt for a different shorthand representation

altogether “12:00”. Since the use of translation tables (but not their inference) has already

been covered by Clio [80], cases where simple string replacement is needed (e.g.: ‘day of

week 1’ translating to ‘Monday’) are not covered here.

5.3.1 Principles of the approach

The operating algebra used is simple, consisting of three operators: concatenate, substring,

and string constant. The objective is to find a translation such that many values in the

target attribute Atarget can be defined as a series of concatenation operations of the form

†Most of this material was presented at a conference in 2006 [112].
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Atarget = ω1 + ω2 + · · · + ων , where each ωi represents a substring function to be applied

to some source tuple T source, and a single value for Atarget is obtained when all functions

are applied to a single tuple of relation Rsource. Each target instance Itarget is thus the

result of the concatenation of substrings from a single tuple T source where Atarget = T source

[β
[x1...y1]
1 + β

[x2...y2]
2 + · · · + β

[xν ...yν ]
ν ], where β

[x1...y1]
1 contributes a substring of the chosen

Asource
n starting at character x1 and ending at character y1.

Note that a source attribute Asource can contribute characters to several subfields in the

target attribute (i.e., the βi are not necessarily distinct), and in fact a particular source

character may be copied to more than one target subfield; however, each target character,

by definition, comes from only one source subfield. Furthermore, a special marker for y1,

‘∞’, is used to represent the end of the string of the current source attribute. This special

case allows the creation of common cases for variable-length attributes. Note that ‘%’ is

similarly used as a don’t know / don’t care character for convenience.

This is a search problem (find a tuple in the source relation that contains substrings

from which the target tuple can be constructed) and an optimisation problem (find a

formula that can be reused to create as many target tuples as possible, each from its own

source tuple while ensuring that the translation is concise).

If the source relation contains many attributes and many tuples, and especially if some

of the attributes are very wide, the search problem to match a single target tuple will have

many potential solutions, and many of the potential source tuples will have many potential

formulas that could be applied to form the target value; it is the optimisation problem that

dictates which of these solutions is most appropriate.

A greedy algorithm was chosen to attack the optimisation problem. Although not

guaranteed to find an optimal solution, in practice this approach works well to find a

conversion formula that produces many target tuples from the source relation.

The method comprises three steps: selecting an initial source attribute Asource
x , creating

an initial translation recipe that isolates a substring βx from it, and then iterating for

additional attributes. This process is described in Algorithm 12 and the method is outlined

here in the most general case of an 1:n mapping. Specific and simple cases will be reviewed

in Section 5.4 as part of the overall database integration process. Table 5.1 represents a

simple example of a translation between Unix login names and account holders full names

that is used as an example in this section.
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Data: For a set Asource of source attributes and a target attribute Atarget.

Find column Astart ∈ Asource most likely part of Atarget;1

Generate a translation τpartial partially translating Astart to Atarget;2

Histogram(τ ,Asource) ← ∅;3

while notcomplete(τ) do4

foreach Asource ∈ Asource do5

Sample tuples from Rsource and query Atarget matching τ ;6

Generate a new τ ′ partially translating Asource to A and τ ;7

Histogram(τ ′,Asource);8

end9

τ = Best(Histogram(τ, Asource));10

end11

return Complete translation τ from several attributes to another.12

Algorithm 12: Overall translation algorithm that relates a series of potential source

attributes to a single aggregate attribute.

Asource Atarget

first middle last ... login
robert h kerry ... nawisema
kyle s norman ... jlmalton

norma a wiseman ... rhkerry
... ... ... ... ...

amy l case ... alcase
josh a alderman ... ksokmoan
john l malton ... ksnorman

Table 5.1: A sample problem, where login names must be matched to the columns of an
unlinked table containing account holders full names.

In the first step, all source attributes are scored to identify those most likely to be part of

the target attribute. This step serves as a filter to eliminate all but the most likely attributes

from the more expensive computation in the second step. This identified attribute is used

to create an initial translation formula τpartial, which partially maps the source attribute to

the target attribute. Using this coarse translation formula, additional substring selections
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from attributes are iterated through until a complete translation formula has been found,

or the addition of more substrings no longer provides additional information.

5.3.2 Selecting an initial attribute

In order to begin the search for a translation formula, an attribute with which to start

searching is required. It is obvious when examining the contents of Table 5.1, that selecting

the last attribute initially would be preferable because of its large contribution to the target

attribute. An algorithmic solution to selecting this attribute is thus needed.

For each candidate source attribute, a sample of the distinct values within the attribute

is required. Distinct values are used to prevent the value distribution in the source column

from influencing the number of matches, as individual attribute distributions mean little

in the context of building a translation formula.

As previously reviewed in Chapter 3, the sampling of extremely large relations is prob-

lematic. While with shorter relations one might consider interleaved sampling over the

relation, this does not scale well. A solution was proposed in Chapter 3.3 and a ranking

for attribute similarity already computed in Algorithm 5 of Section 4.3 is reused here to

provide the initial attribute Astart.

Another possibility that is reviewed here as a stand-alone method is the use of gram

counts to assign attribute rankings. From a sample of S distinct instances taken from a

potential source attribute, q-grams are generated for each sampled instance. The number

of times that an instance q-grams matches in the target attribute is counted to yield a score

that reflects the length of the common substrings and the average record overlap between

the source and target attributes. The starting attribute with the highest score is chosen,

as it is the one most likely to be related to the target.

77



Data: For a set Asource of source attributes and a target attribute Atarget.

q = 2;1

sample = 10
100

;2

Astart ← ∅;3

scorebest ← 0;4

foreach Asource ∈ Asource do5

total = Gcount(distinct(∗))(πAsource(Rsource));6

S = total ∗ sample;7

Hits = 0;8

for x = 1 to S do9

key ← σOFFSET=x∗( total−S
S

) ∧ LIMIT=1(πdistinctAsource(Rsource));10

keycount = Gcount(∗)(σ∃q−gram(key)∈Asource(Rsource));11

Hits = Hits + keycount
length(key)

;12

end13

score =

(
Hits

S

)q

;
14

if score > scorebest then15

scorebest = score;16

Astart ← Asource;17

end18

end19

return Attribute Astart most likely to be included within Atarget
20

Algorithm 13: Initial column selection using a fixed q-gram and sample size.

This process is reviewed in Algorithm 13 where the source relation is scanned for the

attribute most likely to be related to the target attribute. It serves as a low-cost filter to

eliminate all but the most productive attribute from the more expensive computations in

Step 2. The number of distinct hits for each key is divided by the length of the key and

by the total count of distinct values S sampled within the source attribute. This yields

the average overlap. By raising this value to the power q, the decreased probability of this

substring occurring randomly in the target is accounted for. Note that by definition q must

be equal to or smaller than the narrowest column being searched.
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Figure 5.2: Effect of sample size on scoring formula for the data in Table 5.1.

Figure 5.2 plots the changes in the rankings of the different attributes according to

their score. From the plot, the scoring stabilises quickly even for small sample values and

a relevant if not ideal attribute is almost always selected.

While this algorithm is computationally expensive for large relations, it provides a

means of selecting Astart whenever we have no means of initially selecting attributes. Thus,

this method is used for the experiments reviewed in Chapter 5.5 where stand-alone transla-

tions are demonstrated. Within the actual database integration method, the set similarity

described in Chapter 4.3 is used instead as the data is already provided by the system.

5.3.3 Generating a partial translation

Given an initial starting attribute, instances from the target attribute matching the source

attributes must be retrieved and an initial translation inferred. This stage of the method

is the most expensive, in that the retrieved instances must both be similar to the source

attribute and be part of the tuple overlap between both relations. Without a partial model

of the translation, many of the retrieved instances will not be relevant to the translation.

First, a sample of the starting attribute is retrieved and target attributes which are

are similar to these are retrieved. An edit distance method is used to generate possible
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programs to convert each source attribute to its retrieved target attribute counterparts.

With this done, the different possible translations formula that can be created with the edit

distance programs are tabulated and the most occurring is selected as a partial translation

formula.

Sampling and retrieving similar instances

This topic was previously covered in Chapter 3 where different models of retrieval were

observed. While in an integration scenario the locally sampled tuples would be available as

matched tuples from database to database, no such assumption is made here for demonstra-

tion purposes. Equal interval sampling is used to select values from the source attributes

and a naive retrieval model for the target attribute.

Algorithm 14 describes this process where the instances are retrieved from the source

target and the target relation queried for similar instances that are then passed on to the

edit distance method.

Data: For a set Asource of source attributes, a target attribute Atarget.

sample = 10
100

;1

Histogram(τcandidate) ← ∅;2

total = Gcount(∗)(πdistinctAsource(Rsource));3

S = total ∗ sample;4

for x = 1 to S do5

KEY ← σOFFSET=x∗( total−S
S

) ∧ LIMIT=1(πdistinctAsource(Rsource));6

T ARGET ← πAtarget(σtop−k, Atarget≈Asource(Rtarget));7

Histogram(τcandidate) ← FindPartTransformation(KEY, T ARGET )8

end9

τ ← max (Histogram(τcandidate));10

return A partial, or full, translation formula τ involving Asource.11

Algorithm 14: FindSimpleTransformation(Asource,Atarget ): Creating an initial set

of recipes from a candidate for a single attribute only.
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Creating edit distance programs and candidate translations

Beyond defining the model within which the translation will be interpreted, a means of

discovering the instance of the translation model for an arbitrary mapping of attributes

must be provided. This is done by keeping track of the locations of the common substrings

over several samples of Asource. Both the correct area within the target column Atarget that

is related to Asource and what area of Atarget is matched can then be inferred from this

information.




r h w a r n e r
w R R = I I I I I
a R R R = I I I I
r = R R D = I I =
n D R R R D = I I
e D R R R D D = I
r = R R R = D D =





Table 5.2: The lowest cost edit path (underlined). “R” stands for a replaced character,
“I” for an inserted character and “D” for a deleted one.

Thus, a method that will generate a sequence of editing operations to transform a

instance from one attribute into another is required. Longest Common Substring (LCS) is

used as a means of extracting these operations and Paterson [90] provides a good survey

of several algorithms available to solve the problem.

While Levenshtein distance [70] does give the minimum number of operations to trans-

form the first string into another, it does not produce the actual operations used. Hirschberg

[53] describes a method which is optimised for the maximal common subsequences in

O(|s1| ∗ |s2|) time. Hunt and Szymanski [57] provide an interesting solution of complex-

ity O((n + R) log n) where n is the length of the longest string and R is the number of

substring matches between the two strings.

Most of these methods rely on a matrix of operations similar to Table 5.2 which il-

lustrates the different possible editing solution for strings “rhwarner” and “warner”. The

three distinct editing operations are “R” for replacement, “I” for insertion and “D” for

deletion, each of which can have its own cost metric. (Experimentally, it was determined

that the costs associated are non-critical.)

The underlined path contains the longest common substring between the two strings.

81



By searching for the lowest cost path containing this longest common substring, the most

optimal means of transforming one instance into another one can be found. By tracking

the editing operations performed for each pair of instances, the correct sequence of τ ’s to

provide a generalised translation function can be inferred. Hence, from the information

within Table 5.2 one would generate a partial translation formula where “rhwarner” =

“%” + β
[1−6]
1 or “rhwarner” = “%” + β

[1−∞]
1 since the β ends at the end of the attribute

instance.

The problem with the use of longest common substrings in generating a translation from

one representation to another is that of the use of separators in formatting. For example,

timestamps of the form “12:03:04” will always have full-colons as separators to the hours,

minutes and seconds. Those characters have no use besides delimiting the information

within the attribute, but impede our ability to match the strings, as previously reported

in Chapter 3.2.1.

The solution is listed in Algorithm 2 from Chapter 3, where a pattern of separator use

is searched for in the instances of an attribute. This is done by creating a histogram of

specific characters at specific locations within the attribute instances. In order to deal

with both fixed and variable width attributes, a relative character position is used to build

the histogram. This histogram, build from previously retrieved instances and verified using

database queries, provides us for a mask that expresses the contents of the attribute. Using

the previous timestamp example would therefore yield a mask of “%:%:%”, or a partial

translation function of τ = ‘%′ + ‘ : ′ + ‘%′ + ‘ : ′ + ‘%′.

This is helpful when aligning the strings in the longest common substring method as

these separators will be respected as string boundaries. Table 5.3 depicts this situation

where the use of separators prevents the string length from over-running beyond the actual

fields of information they represents.

It is also useful when generating a new translation formula τ from the results of the

longest common substring method. Since a partial τ has already been constructed that

identified constants areas of the translation formula, it can be used to align the generation

of the translation with the longest common substring method.
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0 4 : 1 2 : 5 3
0 = I I I I I I I
4 D = I I I I I I
: D D ⊕ I I ⊕ I I
1 D D D = I I I I
2 D D D D = I I I
: D D ⊕ D D ⊕ I I
7 D D D D D D R R
3 D D D D D D R =





Table 5.3: The location of the separator characters “⊕” serves to align the strings.

Creating candidate translation formula from editing distance

With each pair of similar instances from column Atarget to column Asource, a partial trans-

lation formula is found that will match the common information between the two sets of

column instances. This is achieved by looking for longest common substrings between the

pairs of column instances. By keeping track of the locations of the common substrings over

several samples of Asource, the correct area within the target column Atarget that is related

to Asource and what area of Asource is matched can be inferred.

The translation formula is characterised for a single subfield as taking characters from

certain consecutive positions in some value from Asource and inserting them into templates

for Atarget by assigning them to a specific location within the target value. For this purpose,

the term ‘recipe’ is used to characterise such insert operations, and henceforth the term

‘region’ refers to any consecutive series of characters taken from Asource. For example,

one (partial) translation formula relating the instance “warren” to “rhwarren” would be

“%Asource
x [123456]” which states that characters 1 through 6 from column Asource

x are to be

mapped to something (as yet unknown) followed by that region.

From these recipes derived from pairs of tuples, partial translation formula (ωn) must

be created that are inferred from all of the collected recipes and that can be applied to the

source and target tables as a whole. This is done by creating a candidate ωn from each

individual region within a recipe. Then, the candidate translations are collated and the

one that occurs most often selected. Algorithm 15 explains this process in pseudo-code,

and it is discussed here in detail.
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Data: Two sets of matched strings, LHS and RHS.

MASK = FindSeperators(RHS), AllTransformations() ← ∅;1

foreach (RHS,LHS) in (LHS,RHS) do2

RECIPE ← LCS(RHS,LHS,MASK), τ ← ∅, Last op← ∅;3

foreach Recipe ∈ RECIPE do4

for x = 1 to length(Recipe) do5

if op x of Recipe 6= Last op then6

if op x of Recipe ∈ τpartial then7

τ = concat(τ, τpartial);8

else if op x of Recipe is‘%′ then9

τ = concat(τ, ‘%′);10

else if op x of Recipe is ‘Insert’ then11

τtmp ← AInsert[position in AInsert];12

τ = concat(τ, τtmp);13

end14

else if op x of Recipe is ‘Insert’ then15

if posinA(τtmp) + 1 = position in AInsert then16

τtmp ← tail(τ);17

τtmp ← AInsert[position in A(τtmp)− position in Ainsert];18

else19

τtmp ← AInsert[position in Ainsert];20

τ = concat(τ, τtmp);21

end22

end23

Last op← op x of Recipe;24

end25

AllTransformations() ← τ , AllTransformations() ← CloneBoundaries(τ);26

end27

end28

τ ← max (Histogram(AllTrasformations()));29

return Partial or complete τ representing the transformation.30

Algorithm 15: FindPartTransformation(LHS, RHS) - Provides a program ω1 +

ω2 + · · · + ων that translates a string similar to set LHS to a string similar to set

RHS. Long Common Substrings (LCS), [53, 57], is used to implement the program.
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As each recipe is processed, its known and unknown character sequences are translated

into a series of regions. Each region ωx represents a string element either from an unknown

source or copied from specific character positions within a designated source column. The

sequence of these regions ω1 + ω2 + ... + ωi describes a translation formula which provides

a partial method to translate the information from the set Asource of source columns to the

target column Atarget.

As ωn represents a fragment of one of the source columns Asource being copied, a model

is needed for the copying operation. A possibility is to create a regular expression using the

recipes as examples. Instead of such an expensive general approach, the absolute character

positions within the source columns is used, and the translation is built as a sequence of

these column references. This method has the advantage in that it provides some support

for columns of both fixed and variable lengths.

For fixed-field data, it is straightforward to identify the commonly repeating recipes, be-

cause the absolute locations of the overlapping substrings will always align across recipes.

Any superfluous matches (that is, other characters matching the overlapping field) will

occur infrequently enough that the outliers recipes can be recognised and discarded. For

variable-length fields, however, the problem is slightly more difficult as the absolute loca-

tions of the matching values are not aligned. Thus a special provision is needed to enable

the edit program to handle these situation. Congratulations, you have found the secret

message. When generating the absolute character positions of the source column, the re-

gion is checked for an ending location. If it ends at the end of a source attribute instance,

an additional copy of the translation is generated where the current region is explicitly

marked as copying the remainder of the string. This is implemented in the CloneBound-

aries function of Algorithm 15.

Furthermore, by having the translation behave as a sequence, the relative ordering in

which the substrings occur is preserved. This allows the method to deal with problems

such as the dataset in Table 5.1, where the column widths are variable. Neither of these

properties hinder fixed-width columns and thus the solution remains generalisable.

The editing algebra and edit distance methods cannot accommodate all specification

of substrings (e.g.: the second-to-last character); however it is sufficient for most prac-

tical purposes. With this initial translation formula obtained, the other attributes that

85



contribute information to the target attribute must now be found if warranted.

5.3.4 Search for additional attributes

With an initial translation formula found, the algorithm again iterates through the list

of attributes to locate additional β terms to the translation formula τ . The process is

similar to that of Chapter 5.3.3, however in this step the method benefit from both the

information in τpartial and from the retrieval model provided by the current candidate

column. Furthermore, the decision is no longer of which updated translation formula is

accurate, but which candidate attribute provides the correct translation formula.

Data: For a set Asource of source attributes, a target attribute Atarget and a partial
translation τpartial.

sample = 10
100

;1

Histogram(τcandidate) ← ∅;2

for Asource ∈ Asource do3

total = Gcount(∗)(πdistinctAsource,∀Asource∈τpartial
(Rsource));4

S = total ∗ sample;5

for x = 1 to S do6

KEY ← σOFFSET=x∗( total−S
S

),LIMIT=1(πdistinctAsource,∀Asource∈τpartial
(Rsource));7

T ARGET ← πAtarget(σtop−k,Atarget≈Asource,Atarget=τ(KEY)(R
target));8

Histogram(τcandidate) ← FindPartTransformation(KEY, T ARGET )9

end10

end11

Score Histogram(τcandidate) using Frequency(τcandidate)
max(1,AvgLength(Asource)−φ)

;12

τ ← max (Histogram(τcandidate));13

return The final translation formula τ .14

Algorithm 16: FindComplexTransformation(τpartial,A
source, Atarget): Creating an ini-

tial set of recipes from a candidate.

Algorithm 16 represents this process where all attributes are iteratively checked for pos-

sible translations. The final translation is selected using a scoring function that attempts

to prevent sporadic matches. The formula scores candidate translations based on a per-

column normalised occurrence score, but also penalises the score for using wide columns.

86



The intuition behind the solution is to skew the selection of columns towards those that

provide a concise answer and thus avoid serendipitous matches on large text fields.

The term ‘Frequency’ refers to the occurrence count of the candidate translation τcandidate

normalised to the total number of translations created by its parent column Asource. The

denominator max(1, AvgLength(Asource) − φ) is a penalty term that was added to deal

with especially noisy columns and that provides a gradual back-off for long strings. More

specifically, the φ parameter prevents columns with less than a certain average width from

begin penalised, while the max term prevents the denominator from being negative and

ensures a mathematically well-behaved function. Experimentally, it was determined that

columns with an average length of over 4 characters (φ = 2) should be moderated by this

penalty term.

This process repeats until the complete translation τ is found or no instances of the

target attribute can be retrieved for the partial translation. An explicit decision was also

made not to implement backtracking in our method: this would only be worthwhile if

the overall database integration system was capable of providing feedback on translation

formulas, and no such assumption is made here.

5.4 Application to database integration process

In this section, the generic translation method previously described is applied to the prob-

lem of providing a full translation from the foreign database’s joined relation Rjoin and the

local database relation Rlocal.

Our solution is to use the partial mapping already provided by the join finding algo-

rithms of Chapter 4 to extract the required inter-database mapping and translations. We

use a incremental process where the simplest, one attribute to another attribute, mappings

are first located. Using comparable tuples from Rjoin and Rlocal, we then infer translation

formulas for those matches that are inexact across both databases.

With these simple matches, we are then able to increase our ability to select individual

tuples from Rjoin using the attributes of Rlocal. This increased selectivity enables us to

then pursue complex mappings and translations that involves multiple attributes within

the same relation. When some mappings and their translations are known, we are then in

a position to search for additional mappings within the database.
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5.4.1 Initial matching and translation of 1 : 1 matches.

Figures 5.3 represents the initial condition where the query terms relate certain attributes

from the relation within the local database and from the joined relation within the foreign

database. The initial MAP provides a map in between the query term and the local

relation, while the actual final network provides a mapping between the query terms and

the attributes of the joined relation Rjoin.

Harrison Ford 2  3 Blade Runner  JUN1982   20060403...  Actor

1982

Harrison Ford Actor Blade Runner 1982 1st shelf 2:00 english color 

Actor
Harrison 
Ford

Figure 5.3: Some matches do not require translation and can be used as is, while others
require an inference of the translation formula.

Algorithm 17 shows this process where we initially pursue the mappings that require

no translation. We do this by comparing the values Iquery
ie matching qi that were used in

the production of the NET(), looking for situations where the instance used to create the

network is exactly the same as the query term. For example, this could be the query term

“1984” which matches the instances of attribute year exactly. Since these instances were

previously retrieved to form the network, this is quickly done. These mappings then serve

to ease the search for transformations as our power of selectivity over Rjoin is increased.

The process that we use to find the mapping needing translation is similar to that of

Algorithm 14. However, since some mappings are already known between both relations,

we are able to retrieve an instance from a potential target attribute while ensuring it is

part of a potentially linkable tuple of the target relation.

An important point is that we are unlikely to be certain of the correct mapping of

an attribute requiring translation. The mapping of an attribute without translation can

be quickly determined as the selection of the relevant tuple is limited to those matching
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Data: A mappingMAP of active Q queries to Rlocal and final networks NET().
Plan← ∅ /* Create blank integration plan. */1

/* For each attribute present in the query mappings only once. */

foreach Ax of Alocal where A ∈MAP∧ ∃!A ∈MAPs.t.f(x) = 1∧2

A ∈ Aforeign ∧ ∃!A ∈ NET() s.t.f(x) = 1 do

Translate = false;3

/* Check that all instance values match across databases for this

attribute for all relevant example tuples. */

foreach T of T local−ex do4

If πAlocal(T ) ≈ πAjoin
x

(σT 7−→NET()(σT∈NET()(R
join))) Translate = true;5

end6

if !Translate then7

/* Exact match instance to instance. */

Plan← (Alocal
x τ

A[1−inf]
(1:1) Aforeign

x );8

else9

/* Inexact match attribute to attribute. */

Plan← (Alocal
x τ%

(1:1)A
foreign
x );10

end11

end12

for τ of Plan where τ is unknown. do13

τ = FindTransformationSimple(Plan, A 7−→ Alocal, A 7−→ Ajoin);14

end15

return Partial Plan representing the list of 1:1 mappings between both databases.16

Algorithm 17: Based on the matching provided by the user queries, we first select
the simplest 1:1 mappings and identify those mappings that require translation.

exactly the correct instance value.

In a translation situation, it is difficult to select the correct attribute because there is no

information as to what the correct translation is and what constitutes an appropriate map-

ping. Formally, the query σ∗.∗≈′HarrisonFord′ is much more strict than σtop−k,∗.∗≈′HarrisonFord′

in locating a potential network. Determining the cardinality of a translation based on its

retrieved instances is unclear, but intuitively we would rather process simple translations

first and then attempt the complex translations. Furthermore, attribute mapping requiring

translations are unlikely to be completely resolved to a single attribute: the inexact nature

of the search implies that many attributes within the database will sporadically form a
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network.

Hence, we need to not only find the appropriate matching attributes, but also the

correct translation to the correct instance. Algorithm 18 deals with the simplest of cases

where the local attribute Alocal
x is known to map to one of a set of networks NET x. We

assume that NET x has already been pruned against the ongoing integration Plan so that

only instances with a possible key / foreign key relationship are retained.

Data: A partial plan of 1 : 1 mappings Plan and attribute Alocal
x known to map to

one of a set of NET x and the matching query term Qx

τall ← ∅;1

foreach NET () in NET ()x do2

τcandidate =FindSimpleTransformation(Alocal
x ,Instance(NET ()));3

Trim(τcandidate) where !complete(τcandidate);4

if |τcandidate| = 0 then5

NET ()x = NET ()x/NET ()6

end7

τall ← τcandidate;8

end9

foreach NET () in NET ()x do10

foreach Tlocal−ex
m in T local−ex do11

Rtemp = σ∀7−→1:1∈Plan∃Alocal
m τAjoin (σtop−k,ANET≈Tlocal−ex

mx
( ( Rjoin

1NET() NET ())));12

τcandidate =FindSimpleTransformation(πANET(Rtemp), Tlocal−ex
mx );13

Trim(τcandidate) where !complete(τcandidate);14

τall ← τcandidate;15

end16

end17

Trim(τall) where |τy| < 0;18

return The final translation formula τall.19

Algorithm 18: FindTransformationOneToOne(NET x) - Create a translation for-

mula for a simple 1 : 1 translation.

The process is the same as in the generic translation case, but here the edit distance

method is used directly on the instance of each triplet and on the corresponding query
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term Qi. Furthermore, any incomplete translation formula is dropped immediately and

any triplet not producing at least one complete translation formula is removed from the

list of potential networks. This is done so that only the 1:1 translations get processed

initially; higher cardinality translations have too much uncertainty at this stage of the

mapping and even the source relation is uncertain.

We repeat this process with the remaining networks and the example tuples T local−ex,

again ignoring incomplete translations but without removing any non-matching networks.

Whichever translations that have been recorded as applying to at least one more example

tuple are retained as valid translations.

In this specific case of translation, we are able to find the correct translation by locating

both the proper network and translation formula at the same time. The conditions for a

successful translation were modified from our generalised case in that the translation had

to be complete, without unknown regions, had to apply to the example query and at least

one more of the example tuples. By relaxing this condition in the next section, we will

tackle more complex translations.

5.4.2 Translation of 1 : n mappings

At this point, any remaining translations are likely to be complex 1:n translations which

we reserve for last. We do this so that we can minimise the computational cost of locating

the appropriate mappings that can be used to infer a translation formula.

Harrison Ford 2  3 Blade Runner  JUN1982   20060403...  Actor    english    1

Blade 
Runner

Harrison Ford Actor Blade Runner 1982 1st shelf 2:00 english color 

ActorHarrison 
Ford

Figure 5.4: The matching of complex 1 : n matches requires translation in order to under-
stand in what sequence the attributes are concatenated.
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Figure 5.4 is an example of such a case where one database presents the names of actors

as two attributes and our own that presents this same data in a single attribute. We use

here the same methods as described earlier, but enhance it by using our already known

mappings and translations to select the relevant attribute instance.

Algorithm 19 describes the decision logic used to locate the mappings, where we follow

the same initial procedure of pruning the potential network list by locating potential key

/ foreign key relationships with the current integration plan. However, we also perform a

pruning on the instances contained within the networks themselves by performing an edit

distance method on both the query term Qx and all of the concatenated instances of the

tuple linked to by the network. If the edit distance is unable to find a recipe that links the

contents of the tuple to the query term, the network is removed.

The intent of this step is to prune the list of potential networks by imposing that all

of the required strings be in the tuple before the network is considered for inferring the

translation. Hence, while the spurious retrieval of instances may occur, these tuples are

removed immediately as they will never be able to participate in a mapping.

The translations are then extracted using the generalised method previously described,

but we make use of our partial mappings to ensure that for each iteration, the transforma-

tion are between the instances that are likely to match the value of the query term matching

Tlocal−ex
mx . Hence, we cut down on the amount of unnecessary tuples being processed by the

translation method 1.

One issue that should be noted is that the initial pruning of the networks through joins

may not always be possible. In the case where an intermediate relation is used to join with

another network, the join paths must be checked using the foreign database engine. This

has a certain computational cost which becomes large with attribute requiring translation.

Hence, it is important in these cases to prune the network tuples for feasibility first in

order to reduce the number of queries on the database.

Another small issue has to do with the cases where the source attributes are located

within the foreign database. As with Chapter 5.4.1, it would be convenient to make use of

the sample tuples T local−ex since they are known to be located within both the source and

target relations. However, not all of the mapping necessary for the equivalent tuple in Rjoin

may be available. Thus, we first process all of the translations that have the local relation

1This is also an implicit assumption that all of the relevant attributes are members of a single relation.
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Data: A partial plan Plan of 1:1 mappings and translations and attribute Alocal
x

known to map to one of a set of NET x and the matching query term Qx.
τall ← ∅;1

foreach NET () in NET ()x do2

τcandidate =FindSimpleTransformation(Qx,Tuple(NET ()));3

if !complete(τcandidate) then4

NET ()x = NET ()x/NET ()5

end6

end7

foreach Rnet in NET ()x do8

if Valid(Rnet
1?−? Rjoin) then9

Rtemp = σ∀7−→1:1∈Plan∃Alocal
m τAjoin σtop−k,ANET≈Tlocal−ex

mx
( ( Rjoin

1NET() NET ()) );10

τstart =FindSimpleTransformation(Tlocal−ex
mx ,Rtemp);11

while !complete(τstart) do12

τstart =FindTransformation(τstart,T
local−ex
mx ,Rtemp);13

end14

τall ← τstart;15

end16

end17

τ = max (Histogram(τall));18

return Transformation formula τ . Note that unknown translations are possible.19

Algorithm 19: FindTransformationOneToMany(NET x) - Based on the matching
provided by the user queries, we select complex 1:n mappings.

as a source relation. This typically provides us with additional mappings that enable us

to identify a smaller subset of T join which can be linked to T local−ex.

5.4.3 Search for unknown mapping for leftover local attributes

In this section, we examine the local relation and attempt to find mappings for the at-

tributes within the relation that were not assigned one using the query terms. This is done

in two attempts, represented in Figure 5.5.

Initially, the unknown local attributes are treated as 1:1 matches by searching for a

network that matches the instance value of the attribute for the example tuples. Algo-

rithm 20 describes this situation where the mapped networks are then first treated as 1:1
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translations and then 1:n translations.

Data: Partial Plan with 1 : 1 and 1 : n mappings.

Aunknown = Alocal\(Alocal ∧MAP);1

/* List of all unmapped attributes so far. */

foreach Aunknown in Aunknown do2

for m = 1 to M do3

/* For all example tuples. */

Histogram(Aforeign) ← ∅;4

Tx = σ∀Rforeignτ(1:1)R
local−ex
x

( σ∀Rforeignτ(1:n)R
local−ex
x

( σtop−k,Aforeign≈Aunknown
x

));5

Histogram(Aforeign
l ) ← σAforeign

l
=Aunknown

x
(Tx);6

end7

Score Histogram(Aforeign);8

/* Require at least two of the example tuples to match, attempt

translation if needed. */

if count(max(Histogram(Aforeign))) > 1 then9

NET ()← (Aunknown 7−→(1:1) max (Histogram(Aforeign)));10

end11

Plan← FindTransformationOneToOne(NET ());12

Plan← FindTransformationOneToMany(NET ());13

/* Any left over matching requires a intermediate relation or has

no translation. */

Plan← FindTransformationAndJoin(NET ());14

end15

return The integration plan Plan updated with previously unmatched 1:1 and 1:n16

matches.
Algorithm 20: Using all of the mapped information and translated information so

far, attempt to find other columns matching our local relation.

Note that Algorithm 20 initially assumed that the unknown attribute is either part

or or has a direct key / foreign key relationship with Rjoin. Only if not such match is

found will indirect paths with intermediate relations will be searched for. The reason for

approaching this problem in two parts is one of computational cost.
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Harrison Ford 2  3 Blade Runner  JUN1982   20060403...  Actor    english    1

Blade 
Runner

Harrison Ford Actor Blade Runner 1982 1st shelf 2:00 english color 

ActorHarrison 
Ford

1 english

english

Figure 5.5: The matching of complex 1 : n matches requires translation in order to under-
stand what sequence the attributes are concatenated in.

Searching the joined relation is relatively rapid because it has already been mapped to

the relation of the local database. Whether the mapping may actually be 1:1, 1:n or require

translation, the complex translation in Algorithm 5.4.2 will search for all possibilities.

If the attribute cannot be located within the joined relation, we then attempt to search

for it within the remaining relations of the foreign database, as in Algorithm 21. We do

this by using the same techniques for information retrieval as describe in Chapter 3, expect

that we attempt to perform key / foreign key location at the same time. To do this, we first

search the relations whose attributes have the highest affinity SIM() in order to identify

the correct relation as quickly as possible. We must note again the high computational

cost of doing so in that we have to locate both a new network as well as a translation

formula.

5.4.4 Adding previously unknown attributes to the local database

Finally, there remain attributes within the joined relation that are not currently matched

to the local database. Some of these may record identification numbers that have no value

outside of the foreign database. However, other attributes may have some additional value

to the end user and these can be imported into the local database by querying the foreign

database for individual records and updating the newly created attribute.

The actual insertion of new attributes within the local database is trivial in that we are

able to identify through the mapping which tuples correspond to the instance value being

inserted. The complexity lies in deciding which attribute to insert into the local database
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which is non-trivial and maybe best left to the end user.

5.5 Experimental Results

We experimented with several different datasets under different conditions to validate this

method. Unless noted otherwise, bi-grams and 10% equidistant samples were used for

all experiments, and a series of noise attributes were always added to the source relation

Rsource to make the search for relevant attributes non-trivial.

Specifically, the extraneous attributes included random numerical data, random al-

phanumeric data, street addresses, and a full length RFC-2822 timestamp. The objective

was to add enough data to ensure that the attribute selection made by the method was

not serendipitous, and that the algorithm would function well in the presence of noise. We

present here experiments to validate the method under different cases.

5.5.1 Generalised cases

The first set of experiments dealt with the most generalised and difficult of cases where

no additional information is available to align tuples from database to database. In these

experiments, a naive retrieval model was used to retrieve database instances to ensure that

the translation method would function even in the most difficult of cases.

Dataset # tuples # attr. Translation
Asource 7−→ Atarget

login 6,000 3 ‘Robert’, ‘H’, ‘Warren’,. . . 7−→ ‘rhwarren’
names 700,000 2 ‘Robert’, ‘Warren’, . . . 7−→ ‘WarrenRobert’

names+sep 700,000 2 ‘Robert’, ‘Warren’, . . . 7−→ ‘Warren, Robert’
time 10,000 3 ‘55’, ‘59’, ‘02’, . . . 7−→ ‘025559’

citeseer 526,000 15 title, authorn, year, . . . 7−→ year+authorn+title
DBLP 233,000 17 title, authorn, year, . . . 7−→ year+authorn+title

Table 5.4: Merged names dataset.

Table 5.4 represents the different translations that were discovered using this method.

In the first experiment, the listing of users’ first, middle, and last names against Unix login

names extracted from our university’s undergraduate computing systems.
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Data: A partial plan Plan of 1:1 and 1:n mappings and translations and attribute

Alocal
x known to map to one of a set of NET and the matching query term Qi.

τall ← ∅ for RNET in NET () do1

/* Attempt to find partial transformation for each local example

instance. */

for x = 1 to M do2

I left = πAlocal−ex
xi

( σAlocal−ex
xi ∈NET() ( T local−ex ));3

Iright = σtop−k,Aforeign≈Aleft ( πAforeign∈NET() ( Rforeign ∈ NET() );4

τall = FindPartTransformation(Aleft,Aright);5

end6

/* Attempt to complete partial transformation using local example

instance and foreign tuple. */

τpart ← ∅ Aleft = πAlocal−ex
mi

( σAlocal−ex
mi ∈NET() ( T local−ex ));7

foreach τ in τall do8

Rright = σtop−k,Aforeign≈Aleft ( σAforeign∈NET() ( Rforeign ∈ NET() ∧ Rforeign ∈ tau );9

τpart ← = FindComplexTransformation(τ, Aleft,Rright);10

end11

end12

/* Translation must apply to at least one example tuple. */

Trim(τpart) where |τy| < 2;13

if ∃complete(τpart) then14

Trim(τpart) where ! complete(τpart);15

end16

/* Remove incomplete translations and non-matching networks. */

foreach τ in τpart do17

if Valid(Rforeign
τpart

1?−? Rjoin) then18

τpartτpart − τ ;19

end20

end21

return τpart22

Algorithm 21: FindTransformationAndJoin(NET ) - Attempt to find a translation

first and then locate an intermediate relation capable of joining the remaining net-
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Our search algorithm returned the translation formula login = first[1-1] + last[1-n],

which is, in fact, the most commonly used translation formula, accounting for about half

of the tables’ rows.

We found that with this dataset, the method would tolerate an additional 3,000 rows of

source data (i.e., approximately one-third of the records were unmatched) before it made

a wrong column selection. The algorithm correctly selected the last name as being a part

of the userid, but then incorrectly selected a noise column for improving the translation

for the remaining two characters.

The second experiment consistent of first and last name pairs that were merged into a

single column. The target column full was generated using the translation full = first[1-n]

+ last[1-n], and as expected, the SQL translation query returned by the algorithm was:

Query 5.1 Merging first and last names into a single column.

s e l e c t f i r s t | | l a s t as f u l l from tab l e
where f i r s t i s not nu l l and char l eng th
( f i r s t )>=1 and last name i s not nu l l and
char l eng th ( last name)>=1

A similar experiment was also attempted by inserting a comma and space between both

strings as in the case in many full name representations. The returned query was therefore:

Query 5.2 Merging first and last names into a single column with separators.

s e l e c t l a s t | | ’ , ’ | | f i r s t as f u l l from tab l e
where f i r s t i s not nu l l and char l eng th
( f i r s t )>=1 and last name i s not nu l l and
char l eng th ( last name)>=1

A dataset of time representations was created using 10,000 randomly generated time-

stamps, which were then merged into a single string. For this experiment, the correct

translation from source to target column involved no substrings, only simple concatenations

without separators. The returned SQL query was therefore:
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Query 5.3 Timestamps translation experiment

s e l e c t sub s t r i ng ( hour from 1 f o r 2) | |
sub s t r i ng ( minutes from 1 f o r 2) | |
sub s t r i ng ( seconds from 1 f o r 2) as
f u l l t im e from tab l e where hour i s not
nu l l and char l eng th ( sub s t r i ng ( hour
from 1 f o r 2 ) ) = 2 and minutes i s not nu l l
and char l eng th ( sub s t r i ng ( minutes from 1
f o r 2 ) ) = 2 and seconds i s not nu l l and
char l eng th ( sub s t r i ng ( seconds from 1 f o r 2 ) )
= 2

One thing that was noted with this experiment was the limits of the translation method.

From a statistical perspective, there is no difference between the minutes and seconds at-

tributes. The reason that we are capable of recovering the translation formula is that the

hour attribute is significantly different to the other two and that we can exploit the linkage

between the hour and minutes attributes. Since the minutes and seconds attributes are so

similar, it would be impossible to locate a translation formula which would be composed

only of the minutes and seconds attributes.

Finally, tests were attempted with larger datasets, both in terms of the number of

tuples and of the number of attributes to choose from. The Citeseer 2 and DBLP 3 citation

indexes were used to provide additional real-world translation problems. Their records

were pre-processed into tables containing attributes for the year of publication, the title,

and a series of attributes, each of which contains the name of one of the author.

A new attribute citation was then created from the concatenation of the year of publication,

title, and first author for all 526,000 records (and stored in a randomly shuffled order). This

provided a test to study how the method performed on a dataset that has many tuples and many

similar columns (each representing one author).

To further examine the robustness of the algorithm, we chose a sampling size of only 1% of

the distinct values from each column. Even with such a small sample size, we were able to extract

the correct transformation formula: citation = year[1-inf] + title[1-inf] + author1[1-inf], with an

equivalent SQL query of:

2http://citeseer.ist.psu.edu/oai.html
3http://dblp.uni-trier.de/xml/
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Query 5.4 Translation query obtained for both Citeseer and DBLP

s e l e c t year | | t i t l e | | author1 as c i t a t i o n from tab l e where year i s not
nu l l and t i t l e i s not nu l l and author1 i s not nu l l

The result obtained with the DBLP dataset was similar and both cases were resolved in less

than 20 minutes of elapsed time on a Sunfire v880 750MHz machine.

A question that remained was how well the method would work when very little overlap was

present between the source and target relations. To answer this an experiment was designed

where the citation attribute of the Citeseer data was matched to the DBLP dataset. This was a

very hard problem, because although there should be overlapping citations, the citations often

have misspellings, incomplete author lists, and incompatible abbreviations.

While the maximum number of matches between both tables can be no more than 233,000,

closer examination showed that there existed only 714 records matching exactly on the year, title,

and author1 attributes. Hence, when attempting to find a translation formula for the citation

column from the Citeseer dataset to the DBLP dataset, not only were there 17 attributes to

select, but there were also very few overlapping tuples that could be used to build the translation.

Surprisingly, the program did not return the expected translation formula, but instead re-

turned the formula year [1-inf] + title[1-inf] + author2[1-inf]. Subsequent examination of the

relations revealed that there existed 378 tuples within the Citeseer dataset that were also present

within the DBLP dataset, but with the first and second authors reversed! Removing the matched

records and re-running the program then produced the expected formula.

While the first translation found actually occurred less often than the expected translation,

both have a very low frequency of occurrence within the datasets: much less than 0.5% of the

source tuples are involved. Which of the two correct solutions is returned first is determined by

which tuples happened to be sampled from the database.

What is interesting in this experiment is that the first translation formula found by our

method matches a block of articles within the Citeseer dataset with inverted first and second

authors. Although unintended when this experiment was designed, it showed that the method

does in fact identify previously unknown relationships between datasets. This result supports the

motivation that tools for data conversion must operate in environments where the schemas are

only partially understood and/or suffer from poor overlap.

The overall method has shown itself to be relatively insensitive to the size of the sample.
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Hence, it is acceptable to lower the sample size to very low values to deal with very large datasets.

As demonstrated by the final experiment, in practice, only a few dozen ‘good’ samples are required

for the method to function. These conclusions are similar to those reached by Popa et al.[92, 93],

which referred to this process as ‘data chasing’, and by Fletcher [38] who termed it as locating

‘critical instances’.

Datasets with several million rows eventually require the high precision instance retrieval

methods described in Chapter 3, not for precision reasons as much as reducing the sheer mass of

tuples that must be processed before an answer is produced.

5.5.2 Algorithmic Analysis

The computational complexity of the algorithm described in this section is dominated by the

number of select operations that must be performed to match tuples in relation Rsource to tuples

in relation Rtarget. Let ssource be the number of tuples in Rsource and starget be the number of

tuples in Rtarget. Let l be the number of potential source attributes from Rsource, and let w be

the maximum number of characters in any value in the target attribute in Rtarget.

The worst case time is therefore O(w ∗ l ∗ ssource ∗ starget). The proof of this claim follows

from the observation that the algorithm is dominated by the step described in Chapter 5.3.3,

where on each iteration, for each source attribute, samples are selected, and for each sample, the

target attribute is searched for matches. Since each iteration determines an additional region of

the target that is included in the formula, at most w iterations are needed. In practice, however,

regions are larger than one character each, only a small fraction of ssource is required, and a

smaller fraction of the starget target values are matched with each new iteration.

This can be clearly observed in Figure 5.6, which plots the cumulative time spent up to the

end of each step of the method for various subsets of the Citeseer citation example. What is

evident from inspecting the plot is the dis-proportionately high cost of searching for the second

attribute during the first iteration of our search: for that step, the constraints on retrieving

instances are few and we must search all of the columns.

This also shows the performance bottleneck of the method: the computational balance be-

tween retrieving similar instances (database I/O) and the quadratic time for the longest common

substring for each string pair (client in-memory). The trade-off should favour efficient instance

retrieval with good SQL engines when the client has limited capacity. This motivates the algo-

rithm behind Chapter 5.3.2 where the column is selected before recipes are generated. Notice

that in Figure 5.6, both these operations are less costly than the first iteration.

101



0

2

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90

Mins.

Percentage of Citeseer data processed

Step 1

3 3 3 3 3 3 3

3
Step 2

+ + + + + + +

+
1st Iteration

2
2

2

2

2

2

2

2

2nd iteration

×
×

×

×

×

×

×

×

Figure 5.6: Wall clock time versus Citeseer dataset size.

5.6 Conclusion

In this chapter we reviewed the issue of translating both the schema data and the instance data

concurrently from one database to another. The state of the art in the field was reviewed and its

limitations highlighted. We presented a comprehensive method for the translation of a relation

within a local database to a foreign one as well as algorithms allowing the addition of previously

unknown data to the database. Whereas previous approaches required specialised domain specific

matchers to form the matches and translations, we present here a generalised algorithm for most

string-based matches.
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Chapter 6

In-depth case studies

You get what you asked for, not necessarily what you wanted.

In this section we review the application of these methods to the problem of retrieving infor-

mation from databases into our own schema and data representation. We have already presented

limited results on the performance of the individual elements that comprise the overall process

proposed. Here we present a top-to-bottom description of the method while attempting to in-

tegrate actual data. Because not all of the translation and matching cases previously described

are present within the datasets, we modified the datasets in some cases to provide a test of the

overall algorithm.

6.1 Data used within these experiments

We use two different databases as potential foreign databases: the first is a dump of an instance

of a MythTV [54] personal video recorder database with two weeks of television lineups. The

second is a copy of the Internet Movie Database (IMDB) [29] converted to a relational form

using a freely available script by Alberani [5]. Both databases contain the details of movies and

television series but using different representations and schemas.

The MythTV database contents also encompasses operational details of the recorders such

as recorded shows, logging messages and built in video game engines. The database contains 39

relations with a total of 328 attributes. The overall size of a database dump is approximately

150MB. The interesting aspect of this dataset is that the schema and the application using the
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database are still under development. The database is known to contain two unused relations

still containing data, three relations that have redundant content, several attributes that are no

longer used but that contain content similar to live data and unused attributes who contents are

always the same.

The IMDB database contains in depth biographical and casting information about movies and

television series. The database contains 14 relations with a total of 70 attributes and an overall

database size of about 3.2GB. The interesting elements of this dataset, beyond its sheer size, is

its detailed information about every movie and several attributes that contain human readable

descriptions of the various movies and shows. Both of these data source also violate some of the

assumptions of Chapter 1.2.1 and we review these problems as part of our discussions.

6.2 Local database and query set construction

Initially, we obtain from the user a free-form query that serves to direct the integration, in the

manner of “Harrison Ford Blade Runner 1984”. The derived relational query Q is actually made

up of several query terms Qi, each of which contain one of more tokens from the free-form query.

A fundamental aspect of our method is the availability of a small, well understood, local

database Rlocal which serves as both the intended recipient of the integrated data and as a partial

reference to the data that interests us. Since the query refers to data contained within the local

database, we can use the information within the local database to cluster the tokens within the

free-form query into specific query terms.

Query # Q1 Q2 Q3

1 Blade Runner Harrison Ford 1982
2 Star Trek Joan Collins 1967
3 Footloose Kevin Bacon 1984
4 Fear Factor Kelly Preston 2001
5 Universal Soldier II Matt Battaglia 1998
6 Sands of Iwo Jima Adele Mara 1949

Table 6.1: The user query set used for the initial experiments.

Table 6.9, listed at the end of this chapter, represents our choice of the local relation Rlocal,

which contains the contents of the local database in a single projection. We present here 10

tuples whose information is known to be contained within both the MythTV and IMDB foreign

database and which will be our choice of example tuples T local−ex. The remaining contents of
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the local database are not critical to the experiments are not reviewed here. Table 6.1 lists the

user queries initially attempted on both databases. For readability, the different query terms are

aligned according to their instance type whereas their ordering is random in practice. We use

this presentation so that the different cases will be comparable later on.

It is assumed thatMAP() provides a linkage between the query terms Q and the attributes

of the local relation Rlocal. Thus, by utilising this mapping we are able to assign each free-form

query token to semantically related query terms. In this case, the resulting query terms of Q

would be Q1=“Blade Runner”, Q2 = “Harrison Ford” and Q3=“1984”.

We can instead or in addition assume that every token within the free-form query is a query

term in itself; hence “Harrison” and “Ford” would be two different terms instead of “Harri-

son Ford”. This was not done here as early experiments attempted on the MythTV database

showed that the poor selectivity of some individual tokens (e.g.: “the”) made this method too

computationally expensive.

Our two available foreign databases Dforeign led us to choose a simple strategy for test query

generation. In the case of the MythTV database, the relations containing Movie and TV data

contained a 2-week horizon which limited the number of queries that we could attempt. Therefore

we constructed test queries directly from tuples extracted from the main program relation of the

database along with cast information located within other relations of the database. These were

also matched against the IMDB database which is much larger and comprehensive.

6.3 Experimental Results

Both foreign databases were loaded onto an installation of the Postgresql relational database

system running on a Sunfire v880 750MHz machine. The different algorithms were implemented

using a number of perl and shell scripts and Java applications, as was required.

6.3.1 MythTV Foreign Database

The MythTV database was queried with six different queries containing title, actor and release

year query terms. Performing the initial search of the entire database for all query terms of all

queries took about 5 minutes of wall clock time.

Table 6.2 tabulates the retrieval performance for the different queries submitted against the

MythTV database, with a top-k limit of 10 tuples. Note that the theoretical number of returned

tuples for 328 attributes at 10 tuples per attribute should be 3,280. The low number of returned
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# Query Term # of tuples Relevant # exact match,
< rank 10 tuple rank(s) non-relevant tuples

1-1 Blade Runner 137 1 2
1-2 Harrison Ford 144 1 -
1-3 1982 121 2 9
2-1 Star Trek 173 5 11
2-2 Joan Collins 124 1 -
2-3 1967 77 40 14
3-1 Footloose 101 1,2 1
3-2 Kevin Bacon 155 1 -
3-3 1984 97 2,4 13
4-1 Fear Factor 161 9 11
4-2 Kelly Preston 169 1 -
4-3 2001 278 Not found 14
5-1 Universal Soldier II 178 9 1
5-2 Matt Battaglia 145 1 -
5-3 1998 109 9 20
6-1 Sands of Iwo Jima 145 1 2
6-2 Adele Mara 147 1 -
6-3 1949 95 1 11

Table 6.2: Retrieval performance for test query terms on the MythTV foreign database.

tuples indicates that a great number of attributes are unable to match even one q-gram of any of

the query terms.

Inspection of the rankings of the query shows that in most cases, the relevant tuple is highly

ranked, except for the year information. This is because the year data is prevalent within the

database due to its purpose to scheduling recordings: too many instances are similar and some

result sets can become flooded. Note how the “2001” query does not locate the correct tuple

within the database, even with 14 exact matches located within the result set. This is caused

by the prevalence of the year 2001 in the shows scheduled; the result set is flooded with more

than 10 long timestamps from the relevant attribute and the correct tuple is not retrieved. This

is also the reason why in Algorithm 7 of Section 4.3 we mark certain attributes as ‘large’ when

attempting to locate joins. Since the result set is flooded, we cannot attempt to search for a join

using the query results only, and we must instead query the database directly at a later time.

With the search for instances complete, we now begin searching for potential joins within the
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NET top-10 top-100
nets nets same nets nets same

possible actual tuples possible actual tuples

Harrison Ford Q2, Blade Runner Q1 19,728 0 0 803,453 0 0
Harrison Ford Q2, 1982 Q3 17,424 0 0 666,236 0 0
Blade Runner Q1, 1982 Q3 16,577 11 1 718,732 11 1

Joan Collins Q2, Star Trek Q1 21,452 0 0 1,129,950 0 0
Joan Collins Q2, 1967 Q3 9,548 0 0 441,936 0 0
Star Trek Q1, 1967 Q3 13,321 6 0 712,800 6 0

Kevin Bacon Q2, Footlose Q1 15,655 0 0 619,760 0 0
Kevin Bacon Q2, 1984 Q3 15,035 0 0 361,950 0 0
Footlose Q1, 1984 Q3 9,797 26 2 556,320 26 2

Kelly Preston Q2, Fear Factor Q1 27,209 0 0 1,478,816 0 0
Kelly Preston Q2, 2001 Q3 46,982 0 0 2,635,390 0 0
Fear Factor Q1, 2001 Q3 44,758 55 0 2,498,240 55 0

Matt Battaglia Q2, Universal Soldier Q1 25,810 0 0 1,164,408 0 0
Matt Battaglia Q2, 1998 Q3 19,402 0 0 868,434 0 0
Universal Soldier Q1, 1998 Q3 15,805 42 0 681,628 42 0

Adele Mara Q2, Sands of Iwo Jima Q1 21,315 15 0 915,488 15 0
Adela Mara Q2, 1949 Q3 13,775 0 0 496,336 0 0
Sands of Iwo Jima Q1, 1949 Q3 13,965 10 1 395,402 10 1

Table 6.3: Breakdown of tuple sizes for the initial network search.

database. For simplicity, we begin by locating query terms that point to the same relation and

tuple and failing that, attempt to locate joins between pair of relations.

Table 6.3 presents the number of potential networks that could be generated versus the net-

works that were generated based on matching attribute instance values. We also tabulate the

number of tuples that a particular network can identify because all query terms reference the

same tuples.

For example, consider the “Blade Runner, 1982” network. A network can reference any

number of relation and attributes pairs that are linked through a join condition. However, in this

particular case, we can identify that both query terms reference different attributes within the

same relation.

Similarly, notice that two such tuples exist for the network “Footloose, 1984”. In this partic-

ular case the same movie is shown twice within the schedule and hence two tuples exist with the

same movie title and release year. Essentially the network of query terms 1 and 3 (NET (Q1, Qs))
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(Relation: people)

(Relation: program)

(Relation: credits)

??

Figure 6.1: Initial formation of networks from the retrieved instances of the MythTV
database.

can therefore be assumed to be a 1:1 mapping of Q1 to the title attribute and a 1:1 map-

ping of Q2 to the originalairdate, as represented in Figure 6.1. In formal notation, this would

mean that NET (Q1, Q3) = πAlocal
title

(Rlocal) 7−→(1:1) π
Aforeign

title
(Rforeign

program) ∧ πAlocal
year

(Rlocal) 7−→(1:1)

π
Aforeign

originalairdate
(Rforeign

program).

At this point, there remain two networks NET (Q1, Q3) and NET (Q2) that we must merge

into a final network. However, NET (Q1, Q3) and NET (Q2, Q3) have no candidates that we can

use to search for a join. We must therefore search for an intermediate relation that can link both

networks together.

We do this by using the similarity scores sim(I1, I2) that we computed, as in Algorithm 5 of

Chapter 4.3, for the different sets of instance retrieved for each relation / attribute pair within the

database. We use these attribute similarity measures to find a path through the other relations

between both remaining networks. Because we have the ability to search relations for multiple

join attribute pairs concurrently, we choose to make use of the join similarity metrics only to rank

the order in which relations will be searched.

Both value overlap and cosine similarity measure have a limited capacity of predicting key
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Network Rank Intermediate Relation Constrained Join
Relation size Time (s) Size

1 Program 25,570 43 25,570
2 Recorded 34 12 34
3 Oldrecorded 1,206 26 1206
4 mythlog 360 <1 360
5 channel 65 5 65

Q1-Q3 6 cardinput 2 2 2
(Relation: 7 capturecard 2 <1 2
Program) 8 profilegroups 8 <1 8

9 programgenres 35,361 10 32,617
10 credits 54,080 22 230

. . . . . . . . . . . . . . . . . .

1 oldprogram 8072 5s 0
2 credits 54,080 12s 7

Q2 3 program 25,570 16s 0
(Relation 4 newssites 5 3s 0
Program) 5 nestitle 685 2 1

6 oldrecorded 1206 3 0
. . . . . . . . . . . . . . . . . .

Table 6.4: Breakdown of possible join paths between two existing networks and the possible
intermediate relations.

/ foreign key relationships: the linkages between the relations are vary in their size and their

distribution varies greatly according to the type of data being encoded. Without the benefit of

some normalising factor, it is easy for schema matchers to return erroneous results.

The similarity metrics in themselves only mean that there exists a similarity between the set

of instances of two different attributes. Most values are very low and poorly predict the actual

presence of a relationship. However, this does produce a hint of what key / foreign relationships

are unlikely or impossible: the extreme values of complete dissimilarity of the attributes serve to

enumerate paths that are improbable due to empty sets or dissimilar data-types.

For demonstration purposes, we tabulate in Table 6.4 the number of additional tuples created

should the relation suggested by the similarity scores be used to create a join without the benefit

of another network. We did take note of the wallclock time in this case to highlight that this

approach is reasonable for the database to compute.

Notice that while both networks actually discriminate to an individual tuple within the rela-
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Join Path Query Time Tuple Count
program 1?−? oldrecorded 1?−? people 3s 0
program 1?−? oldprogram 1?−? people 6s 0
program 1?−? program 1?−? people 47s 0
ldots ldots . . .
program 1?−? credits 1?−? people 24s 1

Table 6.5: Actual detection of complex join paths within the network.

tions that they point to, the size of the relation produced by the join varies greatly due to the

potential attribute pairs being used to join the relations together.

Furthermore, not all of the relations suggested by the similarity metric can create a path

between the networks. Network NET (Q1, Q3) has a strong similarity to the mythlog relation,

but the relation has no similarity to NET (Q2) that allows it to join them as an intermediate

relation.

We therefore query the database looking for a join of the two networks using any of the at-

tributes from the potential intermediate relations, in the manner of Gcount(∗)( σpeople.name=‘HarrisonFord‘

(Rforeign
people ) 1?=? Rforeign

oldrecorded 1?=? σprogram.title=‘BladeRunner‘( σprogram.airdate=‘1982‘( Rforeign
program ))) > 0.

The interesting aspect of this approach to locating key / foreign key relationships is that we at-

tempt to find all possible attribute-attribute join combinations between the joined relations while

restricting the tuples to those that match currently known networks. The queries generated to

search for these join conditions are inherently complex, often with hundreds of join conditions.

However, their complexity works to our advantage because the problem is inherently a combinato-

rial database search problem and this formulation allows the database query optimiser to operate

in a way that exactly matches its strengths. Furthermore, in most situations there is a low overall

probability that the specific relation attribute that we are querying has been previously indexed.

But, since these queries encompass all of the attributes within the relation, we stand a higher

probability that an index or cache is available for the optimiser’s use. Experimentally, even the

most complex of cases, with over 625 potential joins over 3 relations, took less than 30 seconds

to complete.

For each of the possible relations, we tabulate in Table 6.5 the number of tuples that are

created should any of the relations be used as an intermediate relation. In this case, only the

credits relation can be used as a distance one path between both networks. Figure 6.2 represents

the potential and actual key / foreign key relationships for the two networks and the credits

relation, as well as the individual similarity scores.
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Query-Net Number of suggest joins correct join rank Joins queried
1/1-3 15 7
1/2 9 2 9
2/1-3 11 7
2/2 9 2 9
3/1-3 13 7
3/2 9 2 9
4/1-3 16 8
4/2 14 2 13
5/1-3 15 7
5/2 10 3 10
6/1-3 11 7
6/2 9 2 9

Table 6.6: Comparison of key / foreign key location results for all queries.

Therefore in the case of merging the last two networks, a join would be performed between

the person and credits relations, as well as between the credits and program relations. Formally,

the new network would then be NET (Q1, Q2, Q3) = πAlocal
title

(Rlocal) 7−→(1:1) π
Ajoin

title
(Rjoin

program)

∧ πAlocal
year

(Rlocal) 7−→(1:1) π
Ajoin

originalairdate
(Rjoin

program) ∧ πAlocal
actor

(Rlocal) 7−→(1:1) π
Ajoin

name
(Rjoin

people) where

Rjoin = R
foreign
people 1people.person=credits.person R

foreign
credits 1 credits.chanid=program.chanid

∧credits.starttime=program.starttime
R

foreign
program .

With a unified network NET (Q1, Q2, Q3) now matching the query terms Qi to foreign at-

tributes Aforeign and MAP() matching and translating the query terms to the local relation

Rlocal, we can now find translations from the foreign attributes to the local attributes, as re-

viewed in Chapter 5.4.

To do this, we inspect the actual instances T query
ie retrieved from the foreign database against

those linked through the MAP() to the local relation Rlocal. Initially, we process only those

mappings that are 1:1 and those that do not require translation. In this case, all of the mappings

within the network are 1:1 and we must only determine what translation is required of the

mappings.

For example, if we examine the instances that were used by NET (Q1, Q2, Q3) to map query

Q1 “Blade Runner” to A
foreign
title , only “Blade Runner” is retained as a possible network with an

exact match. Since this is also true for other instances of T query
ie , we can infer that no translation

is needed for this particular mapping and declare that A
foreign
program.title τ

′%′

(1:1) Rlocal
title .

This same process is repeated for the rest of the query terms, that map the year and actor
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Figure 6.2: Using the similarity measures sim(I1, I2) calculated for all retrieved instances
of each attribute, find a distance 1 path between both networks. Partial similarity results
are shown for clarity.

attributes. Since all values match across the NET we can also simply conclude that these

matchings do not require translation. Hence, we can additionally conclude that A
foreign
program.airdate

τ
′%′

(1:1) Rlocal
year and A

foreign
people.name τ

′%′

(1:1) Rlocal
year .

Having resolved the mappings provided by the query terms, we now attempt to find mappings

for the rest of the local attributes as in Figure 6.3. For each of the remaining attributes (Genre,

Type, Sub-Title and Description), we will attempt to search the foreign database while enforcing

a linkage with the tuples which form the current NET .

This essentially is a combination of the retrieval method described in Chapter 3.3 and the

join finding method described in Chapter 4.3. We attempt to retrieve an instance similar to the

unmapped attribute, but also make sure that it has a linkage with the attributes that are already

mapped. Thus, searching for an instance mapping to Genre would result in a query similar to:

σtop−k,∗.∗≈“Science Fiction′′ ( σpeople.name=‘Harrison Ford‘ ( Rforeign
people ) 1people.person=credits.person Rforeign

credits

1 credits.chanid=program.chanid∧

credits.starttime=program.starttime
σprogram.title=‘Blade Runner‘ ( σprogram.airdate=‘1982‘ ( Rforeign

program )))
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Figure 6.3: With all of the mappings and translations found for the network, the search
for additional mappings begins.

Whereas we previously queried the entire database looking for instances similar to our query,

we now do so again but add the discriminating factor that the instance must be part of a tuple

which is within our NET .

In this case there exists only one instance that is similar to the queried instance and matches

the current mapping of NET , “Science Fiction” in the foreign attribute category which results in

the translation A
foreign
program.category τ

′%′

(1:1) Rlocal
Genre. The same approach was used for the Type attribute

and Sub-Title attributes.

The Description field proved to be more difficult than the other attributes in that it is an

attribute that contains much more information than the others and is primarily meant for human

consumption. Furthermore, as a human readable attribute it is both non standardised (many

different descriptions exist) and difficult to normalise and match due to its length. Nevertheless,

matching the description attribute proved to be simple: few attributes are able to match the
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content and few tuples (in this case one) are part of the network.

However, the translations methods reviewed in Chapter 5.4 cannot perform complex text

editing on human languages, and the result is that it is never capable of generating a translation

without inserting content. In these particular case, we mark the translation formula with a

question mark signifying that the matching of the attributes has been done, but no translation

can be found. Formally, we represent this as A
foreign
program.description τ

′?′

(1:1) Rlocal
Description.

This result was consistent for all test queries 1,3,5 and 6 in Table 6.2. For test queries 2 and

4, however, a different attribute, originalairdate, of the foreign database was chosen to map to

the local attribute year, with a translation formula A
foreign
program.originalairdate τ

′originalairdate[1−4]′

(1:1) Rlocal
year

since the originalairdate is a full date. Because the attribute is also within the program relation,

the rest of the integration process is identical to that of query 1,3,5 and 6.

The difference arises from the fact that queries 1,3,5 and 6 refer to movies whereas queries 2

and 4 refer to episodes from television series. As part of the MythTV database design, the airdate

encodes the release year of a movie and originalairdate is null. However originalairdate encodes

the release data of a television episode, in which case the airdate takes a default value of ‘2000’.

However, this holds only for movies and television series, as specials and paid programming

(‘infomercials’) record originalairdate as null and airdate ‘2000’.

This behaviour illustrates an important characteristic of the approach: the information being

retrieved from the foreign database is consistent with the example query being provided by

the end user. However, we would have preferred to be able to find both forms of integration

simultaneously.

if Aforeign
originalairdate! = null then

Aforeign
program.originalairdate τ

′originalairdate[1−4]′

(1:1) Rlocal
year

else

Aforeign
program.airdate τ

′%′

(1:1) Rlocal
year

end

Algorithm 22: The decision logic require to reconcile both integration solutions.

The combined decision for the mapping and translation of the local attribute year is very

simple (Algorithm 22).

It is unclear how such a decision process can be discovered automatically. One limiting factor

is that only one user query is permitted, which restricts the focus of the integration engine to

only one of the two types of encodings. There is the possibility of making use of the rest of the
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data within the local database to locate both types of show. But the problem then becomes

one of distinguishing when a mapping is missing and when a local tuple just isn’t present in

the foreign database. Alternatively, we could modify our query model to use two user queries,

one from each show category: movie (1,3,5,6) or television series (2,4). This would allow for the

concurrent discovery of both encoding schemes, but the problem of unifying both queries would

remain. Furthermore, we still would not know whether a third query might not produce another

mapping.

For this example, the problem can be approached by restricting the integration formulas to

tuples that provide all of the information required of them: a join or a mapping cannot occur

on a null value. Hence, we would first apply an integration solution on tuples that provide a

value for originalairdate and then fall-back to the second solution using the airdate attribute when

originalairdate is null. This solution is simple and intuitive, in that it provides a tuple-matching

solution for the most number of tuples.

However, beyond coverage, it provides no formal justification for choosing the precedence of

the integration solutions. With more complex encodings we will require increasingly complex

decision algorithms to recognise and resolve these conflicts.

Query 6.1 SQL query mapping the MythTV foreign database to the local database for
movie related queries 1,3,5 and 6.

s e l e c t program . t i t l e as l o c a l . t i t l e ,
program . s u b t i t l e as l o c a l . s ub t i t l e ,
program . ca tegory type as l o c a l . type ,
program . category as l o c a l . genre ,
program . a i r da t e as l o c a l . a i rdate ,
people . name as l o c a l . cast ,
program . d e s c r i p t i o n as l o c a l . d e s c r i p t i o n
from program , people , c r e d i t s
where people . person=c r e d i t s . person
and program . chanid=c r e d i t s . chanid
and program . s t a r t t ime=c r e d i t s . s t a r t t ime

Query 6.1 and Query 6.2 respectively present the SQL queries discovered to extract the

information from the foreign database using the mapping described above.
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Query 6.2 SQL query mapping the MythTV foreign database to the local database for
television series related queries 2 and 4. Note the conditional clauses added by the trans-
lation formula.

s e l e c t program . t i t l e as l o c a l . t i t l e ,
program . s u b t i t l e as l o c a l . s ub t i t l e ,
program . ca tegory type as l o c a l . type ,
program . category as l o c a l . genre ,
sub s t r i ng ( program . o r i g i n a l a i r d a t e from 1 to 4) as l o c a l . a i rdate ,
people . name as l o c a l . cast ,
program . d e s c r i p t i o n as l o c a l . d e s c r i p t i o n
from program , people , c r e d i t s
where people . person=c r e d i t s . person
and program . chanid=c r e d i t s . chanid
and program . s t a r t t ime=c r e d i t s . s t a r t t ime
and length ( program . o r i g i n a l a i r d a t e )>=4
and program . o r i g i n a l a i r d a t e i s not nu l l

6.3.2 IMDB Foreign Database

The IMDB database was queried with the same queries (Table 6.1) as was the MythTV database

with comparable results. The larger size of the database meant that an individual search through

the database took about 23hrs for the query to complete. Initially, this may seem excessive on

an absolute scale, but it remains reasonable when compared with the indexing time required for

TF-IDF queries, which takes several days. For this experiment we raised the value of k to 1,000

in order to deal comfortably with the absolute size of the database.

The interesting aspects of this case was the complexity of the database and its size. Whereas

the MythTV database used a single relation for all shows, albeit with varying attributes, the

IMDB database makes use of both alternate relations and attributes for different data types. The

dataset is especially interesting in that its design is a hybrid between what would be considered

a sound database design and one oriented towards a specific application.

Table 6.7 typesets the initial retrieval results for the queries within the IMDB database.

Notice that the same patterns are present as with the MythTV database, but we are not always

able to retrieve the correct instance data from the database due to size. This is especially true

of newer media because of the increase in movie and television series production when compared

with earlier decades. For example, from the perspective of a release year, there are more tuples

for the year 1998 than for movies that were produced in the year 1948.
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Query # Query Term # of tuples Relevant # of matching,
< rank 1000 tuple rank(s) non-relevant tuples

1-1 Blade Runner 10,068 1 10
1-2 Harrison Ford 11,008 225,226,229 5
1-3 1982 25,924 - 13,154
2-1 Star Trek 9,671 6 74
2-2 Joan Collins 11,008 285 8
2-3 1967 25,969 832 14
3-1 Footloose 9,396 2 10
3-2 Kevin Bacon 10,011 1 -
3-3 1984 25,903 - 2,585
4-1 Fear Factor 9,667 1 10
4-2 Kelly Preston 11,012 4 3
4-3 2001 27,388 487 14
5-1 Universal Soldier II 11,007 2093 -
5-2 Matt Battaglia 11,007 6 -
5-3 1998 26,000 - 2331
6-1 Sands off Iwo Jima 11,004 1 -
6-2 Adele Mara 11,007 1 -
6-3 1949 24,100 2101 2533

Table 6.7: Retrieval performance for different query terms on the IMDB foreign database.

The generation of the initial networks was similar in performance to that of the MythTV

database, in that different handling for different types of shows were used by the database.

Figure 6.4 represents the initial building of the network for a television series episode, and

Figure 6.5 represents the creation of the initial network for a movie. Notice that in the case

of a movie, the network is essentially the same as for the MythTV database, however when a

television series episode is being encoded a recursive join is used back to the series title.

As seen in Figure 6.4, the cosine similarity between the episode of id and movie id attributes

which form this key / foreign key relationship is very low, 0.0098. This value is roughly at the

same threshold as no-match attribute pairs. This highlights the limitations of attribute matching

methods applied to key / foreign key relationship finding: because the recursive join is seldom

used, its cosine value is very low even through it is sometimes appropriate. Hence, this is why

we use attribute matching to prioritise our search for key / foreign key relationships without

depending on it outright.
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Figure 6.4: Initial location of the networks for television series tuples.
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Figure 6.5: Initial location of the networks for movies tuples.

This introduces an interesting layer of complexity to the integration process: an additional

key / foreign key relationship must be located to recover the series title, while the episode title

(sub-title) takes the logical attribute normally used for the movie title. Furthermore, the cast
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information is related to the relation instance containing the episode information and not the

series title. While this makes the generation of the networks slightly more complex, most of the

problem lies in the handling of the translation and mapping of the database attributes.

For example, the network of queries 1,3,5 and 6 do not require this additional join and only

requires a basic mapping:

NET (Q1, Q2, Q3) = πAlocal
title

(Rlocal ) 7−→(1:1) π
Ajoin

title
( R

join
title) ∧ πAlocal

year
(Rlocal) 7−→(1:1) π

Ajoin
production year

(Rjoin
title)

∧ πAlocal
actor

(Rlocal) 7−→(1:1) π
Ajoin

name
(Rjoin

name) where Rjoin is the projection of = R
foreign
name 1name.id=cast info.person id

R
foreign
cast info 1cast info.movie id=title.id R

foreign
title .

However, when retrieving tuples that represent television series (2 and 4) the mapping is

different and an additional join must be performed.

NET (Q1, Q2, Q3) = πAlocal
title

(Rlocal) 7−→(1:1) π
Ajoin−tv

series title
( Rjoin−tv) ∧ πAlocal

year
(Rlocal) 7−→(1:1)

π
Ajoin−tv

production year
(Rjoin−tv) ∧ πAlocal

actor
(Rlocal) 7−→(1:1) π

Ajoin−tv
name

(Rjoin−tv) where the Name of the series

must be recovered through an recursive join of the title relation Rjoin−tv = Rjoin
1title.episode of id=tv title.id

ρtitle/tv title( ρtitle.title/title.series title (Rforeign
title )) that is in turn bound to the episode title Rjoin =

R
foreign
name 1name.id=cast info.person id R

foreign
cast info 1cast info.movie id=title.id R

foreign
title .

In both these cases, the intermediate relation cast info must be used to join the actor relation

to the title relations. Table 6.8 shows the breakdown of the join similarity data for all queries.

Overall the results are similar to that of the MythTV database, but with a lower discriminating

power in the number of joins that must be attempted on the database before the correct one is

found.

The generation of the translations that form part of the integration mappings was not found

to be any more difficult than within the MythTV database in that few translations were required.

Generally, the translations were a simple one-to-one copy of the attributes instance data. For a

television series, the translations were:

Alocal
title τ

′%′

(1:1)A
join−tv
series title Alocal

year τ
′%′

(1:1)A
join−tv
production year Alocal

actorτ
′%′

(1:1)A
join−tv
name Alocal

sub−titleτ
′%′

(1:1)A
join−tv
title

while for a movie the translation was:

Alocal
title τ

′%′

(1:1)A
join
title Alocal

year τ
′%′

(1:1)A
join
production year Alocal

actorτ
′%′

(1:1)A
join
name

All of the other mappings were found through a similarity search as with the MythTV

database, however the search for the genre data was particularly interesting. A fragment of

the IMDB database is represented in Figure 6.6 where the genre information is encoded along

with other assorted movie information.

In order to find the movie genre information, it is necessary to find the ’Science Fiction’

string within the database. This was easily found as well as the required join through a key /
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Query-Net Number of suggested joins correct join rank Joins queried
1/1-3 13 7 6
1/2 9 1
2/1-3 12 3 10
2/2 10 5
3/1-3 11 3 10
3/2 10 5
4/1-3 12 5 10
4/2 10 5
5/1-3 13 2 11
5/2 11 5
6/1-3 11 4 11
6/2 11 4

Table 6.8: Comparison of key / foreign key location results for all queries.

foreign key relationship in the manner of Alocal
genreτ

′%′

(1:1)A
join
info with the appropriate join Rjoin = Rjoin

1movie info.movie id=title.id R
foreign
movie info.

However by inspection of Figure 6.6, it becomes obvious that not only will genre information

be retrieved from the database but also distribution, soundtrack and copyright information, since

the relation also contains information beyond genre. Within the database, this information is

labelled using the info type relation. In effect, to obtain only the information that we are interested

in, the condition σmovie info=info type=3 ( R
foreign
movie info ) would be required to ensure that the mapping

would be accurate.

This problem lies in a design decision of the IMDB database where assorted information such

as genre has been concentrated within the same attribute of a relation. This design decision is

common when designers do not wish to incur the cost of additional attributes or relations for

seldom used information. Furthermore, IMDB allows for a movie to have multiple genres, which

would require a large relation to encode the n : m relationship.

This same problem occurs for the mapping of the description attribute that also requires

information from the movie info attribute of the foreign database. However, in this case the

condition that we would require would be σmovie info=info type=102 instead.

Hence, in order for us to accurately retrieve the information from this relation, we again have

to apply a condition to the retrieval operation. Unlike the conditions for the MythTV database,

however, we do not have a simple test for a null value to discriminate the encodings. Perhaps we
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224544  Ford, Harrison

51166    Blade Runner                                      1982      (null)

(Relation: name)

(Relation: title)

1381176  51166     224544  Rick Deckard

(Relation: cast_info)

51166  3  Thriller

51166  3  Drama

51166  3  Sci-Fi

(Relation: movie_info)

3   Genre

(Relation: info_type)

51166  4  Warner Bros.
4   Distributor

Blade Runner Harrison Ford 1982 Science-Fiction

(Local database)

(Foreign database)

102   Plot       

Figure 6.6: The genre information cannot be extracted because of the database design.

could use of a pivot operator to transform a join of the movie info and info type relations, in the

manner proposed by Fletcher [38]. While this would not result in pure SQL query, we would then

be able to acquire single attributes named Genre and Plot from the foreign database for mapping

to our local database.

Another problem illustrated by the IMDB database is shown in Figure 6.7, where a specific

case highlights some of the design decisions of the database and the behaviour of our targeted

integration approach. To deal with localised and re-masters versions of movies, a special relation

exists within the IMDB database that links any alternate media release to its original theatrical

release.

We serendipitously avoided this situation with our query set because we queried the original

theatrical and un-translated releases. When a query is attempted that makes use of this particular
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224544  Ford, Harrison

Harrison Ford

Der Blade Runner

Ford, Harrison

Der Blade 
Runner

51166    Blade Runner                                      1982      (null)

1982
1982

(Relation: name)

(Relation: title)

1381176  51166     224544  Rick Deckard

(Relation: cast_info)

Net(q1,q3)

Net(q2)

29174    Blade Runner, Der      1982    51166   West Germany

(Relation: aka_title)

Figure 6.7: Alternate movie releases can also be accesses, but it is unclear how this would
be correct

relation, the end result is usually failure as the mapping cannot support the rest of the local

database. Interestingly, we were able to avoid this problem because of the targeted nature of the

integration method.

These competing designs and internal mappings highlight the need to be able to use multiple

integration solutions concurrently. In the earlier case of television show versus movies, both

solutions map the Alocal
title attribute to the same attribute within the foreign database, but using

two different join paths. For either type of show that the user query represents (e.g.: a movie

or a TV series), there exists at least one local tuple that support the translations. Hence, the

‘correct’ translation is selected for the show type that the user chooses in his example query. If

we omit any example tuples from the local database that match the user’s show query type, the

method will fail to find a transformation as no support can be found for the user’s requirements.

As for the MythTV database, we can examine what an integration solution must include to

handle both movies and television series from IMDB. In the case of a TV episode, the episode of id

attribute of relation title must not be null in order for a join to occur which retrieves the TV

series title. Conversely, a movie is not part of a TV series and hence the attribute episode of id

will be null, which makes a join impossible. Since these attribute value constraints can be derived

directly from the joins in a translation formula, we can easily check that the current record is

appropriate for an individual translation formula.
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The remaining concern is the question of whether the translation formulas overlap, or collide,

in which case we are unable to use them concurrently. We can deduce this directly from the

conditions of the translation formulas. In this case, the episode of id attribute cannot be null

and non-null at the same time, hence we can deduce that both translation formulas can co-exist

without verifying the foreign database itself.

In more complex cases where such logical deductions are not available, we can infer the

appropriateness of multiple translations by searching the foreign database for a tuple that can

match the conditions of more than one translation formula. For example, should our relations

contain the fictitious attributes is a TV series and is a movie, the presence of a tuple with both

attributes marked as true would show both translations to be incompatible.

Query 6.3 presents the SQL query that would be used to retrieve the movie information from

the IMDB database. Currently, we have no means of dealing with the design of the database

for certain information such as plot description and movie genre. The query makes use of query

constraints that we are currently unable to discover to map this information. We use a similar

approach in Query 6.4 to extract television series from the database. The difference is that we

add a recursive join to find the appropriate series title. Note that in both cases, we are able to

differentiate between the two types of media by enforcing the requirement of one of the solutions

that the episode of id attribute be available to perform the recursive join. Again, the question

of how to mechanise this decision process of whether the solutions can function concurrently is

something that we wish to explore in future work.

Query 6.3 SQL query mapping the movie contents of the IMDB foreign database.

s e l e c t t i t l e . t i t l e as l o c a l . t i t l e ,
t i t l e . p roduct ion year as l o c a l . a i rdate ,
name . name as l o c a l . cast ,
mov i e in fo . i n f o as l o c a l . genre ,
s e cond mov i e in fo . i n f o as l o c a l . d e s c r i p t i on ,
k ind type . kind as l o c a l . type
from t i t l e , name , c a s t i n f o , movie in fo , k ind type , mov i e in fo as
second movie in fo ,
where c a s t i n f o . p e r son id=name . id
and c a s t i n f o . movie id=t i t l e . id
and mov ie in fo . movie id=t i t l e . id
and second mov i e in fo . movie id=t i t l e . id
and kind type . id=t i t l e . k ind id
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Query 6.4 SQL query mapping the television series contents of the IMDB foreign database.

s e l e c t s e r i e s t i t l e . t i t l e as l o c a l . t i t l e ,
t i t l e . t i t l e as l o c a l . s ub t i t l e ,
t i t l e . p roduct ion year as l o c a l . a i rdate ,
name . name as l o c a l . cast ,
mov i e in fo . i n f o as l o c a l . genre ,
s e cond mov i e in fo . i n f o as l o c a l . d e s c r i p t i on ,
k ind type . kind as l o c a l . type
from t i t l e as s e r i e s t i t l e , t i t l e , name ,
c a s t i n f o , movie in fo , k ind type , mov i e in fo as
second movie in fo ,
where c a s t i n f o . p e r son id=name . id ,
s e r i e s t i t l e . id=t i t l e . e p i s o d e o f i d ,
and c a s t i n f o . movie id=t i t l e . id
and mov ie in fo . movie id=t i t l e . id
and second mov i e in fo . movie id=t i t l e . id
and kind type . id=t i t l e . k ind id

6.4 Discussion

One of the unexpected elements of this research was the ease with which joins could be located

between relations and the difficulty with which some of their attribute relationships could be

enumerated. In all cases, it was obvious from inspecting the top-k results manually which relation

and attribute a query term would be linked too. However, it was found that deducing what

attributes were actual key / foreign key relationships was difficult, in that spurious dependencies

would appear against unused or constant valued attributes. In these tests, we were able to remove

some of the superfluous join conditions through the use of the additional example tuples T local−ex.

One of the items that was revealed is that database designers tend to use integers as a means

of ‘flagging’ tuples. For example, the hdtv attribute of the program relation is an integer that

takes a 1 or 0 value depending if the show is in High Definition TV. Such integer flags tend to

begin at 0 and begin counting up, which results in a disproportionate number of attributes with

a few small integers only. These also tend to generate many spurious join conditions between

themselves, which requires a pruning step to ensure that all join conditions are necessary. There

may be some additional methods of normalisation that could be applied to key / foreign key

searches to discourage the inclusion of these attributes when generating join conditions.

Previous work in the area of join finding reported that the generation of spurious large joins
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over faulty joins was a problem. Because we restricted the tuples that are considered to locate

joins with the initial query, no cases of large joins occurred. What we did find in several cases was

that superfluous join conditions would be located that were unnecessary to the join and would

prevent the sampled tuples from matching the found joins. Hence, a trimming operation was

added for this specific case, as reviewed in Algorithm 9 of Chapter 4.

Hence, the identification of specific tuples that are shared by different queries is preferable

to the simple search for join conditions over several tuples. This requires us to keep track of

individual tuples instead of the attribute values themselves.

A difficulty specifically with the MythTV database is the amount of information that it

contains which is duplicated, ambiguous or inactive. In many cases, the search for networks was

slowed by attributes that had similar content to our search. For example, the database contains

information on available video game titles. These are not related to the Movie and TV line-ups,

but video game releases are usually themed on feature movies and named as such. While these

values were returned in our initial retrieval of instances from the database, it was not logically

possible to achieve a join path to other line-up information and the non-relevant video game

information was ignored. This illustrates the robustness of our approach.

One relation containing old data is oldprogram, which contains obsolete line-up information.

As some queries sent to the database matched the information within the old lineup, the initial

networks contained the relation as a possible match. However, because the information was

incomplete both in the number of tuples and attributes (the relation was a subset of the active

attributes), these paths were soon dropped and the correct network was constructed using the

active program relation.

We were also successful in targeting the subject of the database integration between both

databases through the use of a query. The problem that arose was that we were too successful:

we would only acquire either television series or movies from either databases due to their differ-

ences in encoding. This is interesting in that in many cases, a simple query is sufficient for the

integration process to take place at the cost of a more generalised solution. A possibility is the

use of multiple queries to allow for some diversity in the type of object being retrieved, but this

demands some kind of higher integration logic capable of deciding on the precedence of multiple

integration solutions.

Finally, one of the concerns is that databases do not always follow straightforward represen-

tations for the storage of their information. Because this method depends on the relation as its

primary means of solving the integration problem, it can fail as in the case of the IMDB database

for the genre and description attributes. In the future work we should explore means of locating
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such situations and re-evaluating the data to fit our method.

There is also the question of how the method handles ambiguous queries that, for example,

could refer to both a motion picture or a television series episode. While we were unable to find

data or query cases where this occurs within either database, we can infer the behaviour of the

method from its design.

Hypothetically, should we query the database with the terms “William Shatner” and “Star

Trek”, it would be ambiguous whether we are referring to a movie or a television series. As-

suming that the attribute instances were to match both queries exactly, the returned integration

solution would always be the shortest path one. Hence, in the case of the IMDB database

the motion picture would be joined to the actor, because it would only require the relations

R
foreign
title 1title.id=cast info.movie id R

foreign
cast info 1name.id=cast info.person id R

foreign
name . Conversely, retrieving

the television series alternative for this query would imply the joins ρtitle/tv title ( R
foreign
title )

1tv title.id=title.episode of id R
foreign
title 1title.id=cast info.movie id R

foreign
cast info 1name.id=cast info.person id R

foreign
name .

Because of the ‘greedy’ nature of the search algorithm, relation to relation joins are attempted

before using intermediate relations, the solution with the least number of joins will be returned,

in this case the movie.

In all cases, the overall method will find a relation that assembles as many of the terms within

the query as possible, in the simplest way possible.

Another issue is with the complex translation of attributes that merge information that is

contained within multiple attributes in another database.

A common representation within a database system is to have the name of a person in two

attribute instead of one, therefore one attribute for the family name and one for the common

name. To this end the name attribute of the MythTV database was split into two attributes: last

and first.

This case is handled in the way that networks are searched where inexact matches are used

for the network searching. The lack of a specific tuple to search for in a network does expand the

number of network under consideration significantly.

Limiting the retrieval to 100 results per attribute search, there are 21 attributes over 13 rela-

tions that contain a possible in-exact match to ‘Harrison Ford’ within 1,031 retrieved tuples. 193

of these tuples could be capable of possibly forming a complete translation formula to the query

term ‘Harrison Ford’, however only two of these have a potential key / foreign key relationship

with the remaining query networks. Out of these two, both networks fail to support a translation

formula which is complete.

Similarly, 741 of the retrieved instances could create a complete 1:n translation formula can
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make one on the tuple, from which the same two query networks are extracted. As no network

can be found with a matching translation, the translation is therefore found independently by

retrieving additional instances from the database, using the example tuples over the relations

that were previously retrieved by the query term. While hypothetically there could be many

translations found concurrently, in this case only one is found, through the first and last attributes

in Figure 6.8.

Harri

Blade R

Harri

Blade 

R

 (Description) SP4353 1982  20060403...   SciFi Cable Blade Runner

Harrison Ford 56

 56 20060403...  SciFi Cable

1982

1982

0.001

0.223

0.98

��� ��! 
Net(q1,q3)

Net(q2)(Relation: people)

(Relation: program)

(Relation: credits)

Figure 6.8: In this sub-case, the names of the actors are split across two attributes.

The located translation was A
foreign
people τ

first[1−inf]+′, ′+last[1−inf]
2:1 Alocal

cast using only the example

tuples. With the translation providing a definite mapping and translation for the last query term,

a linkage between the last two networks is searched for. This is done in the manner previously

discussed: by iteratively searching every possible join path between the matching tuple sets of

both networks. There exists only one case where the specific tuples can be joined, using the

intermediate relation credit.

On of the elements that this case highlights is the necessity to attack mappings and transla-

tions in a manner that has the least cost. In the previous queries, such as the case of the MythTV
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episode release dates, we would obtain a network and a translation very quickly because the num-

ber of tuples refereed to was small.

Here after attempting to find the translation and the network join paths concurrently and

failing, we could have perused the translation by itself or the network join by itself. Since finding

the network join is prohibitively expensive, we choose to locate the translation first at the cost

of additional searches of a subset of the relations. This created a situation that is similar to

the generalised case of translation finding and we were able to locate a correct mapping and

translation for the attribute.

It is this mapping that allowed us to then locate the join path within the database. Without

the translation the number of queries required to find the path would have been prohibitive.

6.5 Conclusion

While retrieving instances from the databases and creating initial networks, we had the same

explosion in the number of potential networks as was reported by Agrawal et al. [4] and Mayssam

et al. [101]. However, contrary to them we were able to rely on a few tuples from the local database

to prune the networks to a small number, suitable for detailed exploration.

This reduction in the number of useful networks is similar to the results reported by Kotidis

et al. [66], where in practice there are actually only one or two tuples that will satisfy the

requirements of a query. However, Kotidis reported this result in the context of their tool being

used by domain experts, supported by a large amount of meta-data for each database object.

In our case, the reduction is an inherent part of an automated process that does not require

interaction beyond the initial query and which does not use any meta-data.
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Title Sub-Title Type Genre Year Cast Description

Dark Angel Heat Series Fantasy 2000 Jessica Alba ...

Lethal Weapon - Movie Action 1987 Danny Glover ...

MASH Welcome Series Comedy 1975 Alan Alda ...
to Korea

Puppets Who Kill For Jesus Series Comedy 2004 Dan Redican ...

Queer Eye for the Kord S Series Self impr. 2005 Ted Allen ...
Straight Guy

Starship Troopers - Movie Action 1997 Denise Richards ...

The Desert Rats - Movie War 1953 James Mason ...

Wild Wild West - Movie Action 1999 Will Smith ...

X2 X-Men United - Movie Fantasy 2003 Hugh Jackman ...

Table 6.9: The tuples T local−ex, selected as local example tuples from the local database
Rlocal.
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Chapter 7

Conclusion

In this thesis we approached the problem of database integration by targeting a specific area of a

foreign database for integration to a known, local database. A user defined, free-form query was

used to define what information to integration to the local database. No schema or knowledge of

the non-cooperating foreign database was assumed and no human intervention was involved in

the searching, matching and translation process.

Fundamentally, the thesis is based on two observations: (1) the majority of the cost of pro-

cessing queries on a database is due to number of tuples within a relation and (2) relations within

relational databases bind items of information in a pattern that can be used to recognise entities.

We list here the contributions of this thesis.

7.1 Summary of contributions

During the initial discovery phase of the database the previous state of the art was the use of

a substring search or of a TF-IDF search (requiring the creation of an index). The proposed

keyword searching solution achieved results with similar performance in terms of precision as

that of TF-IDF retrieval, without requiring the creation of an index. Furthermore, it was found

that because of the way that the index is created on the foreign database, the queries can be

processed over four times faster than with a TF-IDF approach. In absolute terms, the complexity

of the retrieval method is linear to the number of tuples within a relation.

Similarly, sampling has been used for years as a means of extracting only the minimum of

information from a data set in order to analyse its contents. Whereas in previous work the
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sampling of an attribute would require the traversal of the entire relation, we propose a method

where a subset of the attribute is retrieved as part of the querying process and used as a directed

sample of the attribute. This provides us with a method to obtain a sample of the relation

comparable with a uniform sample of the attribute and sufficient to support attribute matching

functions.

While the matching of attributes within and without databases has previously received at-

tention, the problem of translation has been one that has seen very little work. We propose a

generalised method for the discovery of translations between different database attribute in one-

to-one and many-to-one translations. This method is self-directed and tolerant of poor attribute

matching, to be novel. Its worst case computational complexity is O(w ∗ l ∗ ssource ∗ starget),

where ssource is the number of tuples in the source attribute, starget is the number of tuples in

target aggregated attribute, l is the number of potential source attributes and w is the maximum

number of characters in any value in the target aggregate attribute.

Finally, a method of finding appropriate key / foreign key relationships within databases

is proposed. In previous methods the number of possible relationships was based on schema

matching or data-driven approaches. In this approach we also use a data-driven approach, but

restrict the possible tuples that may be used to match from one relation to another with a set

of known example instances. While the theoretical computational complexity remains n ∗m in

the worst case, where both n and m refer to the number of matchable attributes within each

relation, the actual runtime performance is much better. In an unconstrained case, any value

match between any two attributes would be sufficient to suggest a key / foreign key relationship,

and this results in a very large number of potential relationships found. In the new approach,

the forcing of appropriate values on certain attributes within both relations constrains the key /

foreign key finding to relations that match appropriate relationships between known attributes.

The end result is a dramatic drop in the number of potential relations, from tens of thousands to

a few dozen. The method is also extended to deal with key / foreign key relationships spanning

multiple intermediate relations.

7.2 Future work

For convenience, we made the explicit assumption within the work that the local database Dlocal

would be understood and its relation to the query terms Q known through a pre-determined map

MAP().

It would be interesting to remove this assumption, so that both local and foreign databases
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would be concurrently searched and their key / foreign key located. The individual relations

within each database would provide a partial crib-sheet for locating key / foreign key relations

within the other database as more complex relations are iteratively found. Should we be able to

extend this method to process multiple foreign databases, we could then achieve a process where

the local database Dlocal would be created out of multiple other databases without the need for

local example tuples.

However, one of the major conclusions from Chapter 6 was the need to support multiple

concurrent integration solutions. Similarly, our translation finding algorithm in Chapter 5 can

only function with a single translation solution at a time. Because the encoding of information

can take multiple representations within the same relations and key / foreign key joins, a method

must be found to allow for the aggregation of multiple concurrent solutions. The problem lies in

automating the analysis of the integration solutions to find the conditions under which they can

co-exist and how to encode these conditions in a manner that the database can implement.

Finally, the thesis approaches integration with a directed method where only the necessary

relations are used. This is done to prevent unwanted information from being imported. In some

cases it may be that there are several other clusters of relations that require integration, but

that have no key / foreign key relationships. In this case, a strategy of segmentation may be

interesting: clusters of relations could be formed from several initial query searches so that only

specific sets of relations would be searched for the remaining query terms.
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Appendix A

List of thesis conventions and

variables

As a generalisation, any variable typeset in a calligraphic style, e.g.: S, represents a set of objects

while normal type, e.g.: S, represents an object. Superscript refers to the specific database, or

database subset, while indices refer to the specific attribute, tuple or relation with a database.

Any star “∗“ character within an index indicates a don’t care condition.

Dlocal refers to the local database, under the control of the integrating process.

Rlocal refers to the local relation which is a pre-defined projection of all data within Dlocal.

Alocal represents the set of all attributes within the local relation Rlocal. Llocal = |Alocal|, where

Alocal
l refers to the lth attribute of relation Rlocal.

Q represents the set of query terms. I = |Q|, while Qi represents the ith query term.

T local−ex the set of example tuples that have been selected from Rlocal. tlocal−ex
mi represents the

mth instance matching ith terms of Q. Only the 1st of M tuples is retrieved based on the

terms Qi. The remaining M − 1 tuples are retrieved from the local database.

MAP() is a mapping between any Qi of Q and Rlocal.

Dforeign refers to the foreign database, which is uncontrolled by the integrating process.

Rforeign represents the set of relations within the foreign database. J = |Rforeign| and R
foreign
j

represents the jth relation within the foreign database.
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Aforeign represents the set of all attributes within the foreign database, while Aforeign
j is the subset

of all attributes that belong to the jth relation within the foreign database. L
foreign
j =

|Aforeign
jl | andA

foreign
jl refers to the lth attribute of relation R

foreign
j .

T foreign
j refers to the complete set of tuples within relation j of the foreign database, while T

foreign
j

refers to a specific tuple.

I foreign
jl refers to the complete set of instances within relation j, attribute l of the foreign database,

while I
foreign
jl refers to a specific value.

A“triplet′′ is the grouping of a specific relation R, attribute A and value t. Whenever we wish

to reference a specific location within the database, we use this term to prevent confusion.

I foreign match
jli is the ranked set of instances that were retrieved from attribute A

foreign
jl based on

query term Qi. I
foreign match
jlie indicates the eth ranked instance out of Ejli retrieved.

T foreign match
jli specifies the set of tuples retrieved when querying attribute A

foreign
jl based on query

term Qi. T
foreign match
jlie refers to the eth tuple ranked according to I

foreign match
jlie .

Note that we can address a specific attribute within T
foreign match
jlie by adding the subscript

p to get I
foreign match
jliep . Therefore if p = l, then I

foreign match
jliep = I

foreign match
jlie .

T query
ie is the set of all instances that were retrieved for query term Qi.

T attrib
jl is the set of all instances that were retrieved from relation j, attribute l for all query

terms Q.

sim(I1, I2) represents the similarity scores between a set of instance values I1 and I2.

NET () is a set of possible networks.

PLAN() Represents an integration plan that can be used by a mediator.

Alocal 7−→n:m Aforeign Represents a certain mapping from Alocal to Aforeign. n:m represents the

cardinality of the mapping, where we have information from n different Alocal’s mapping

to m different Aforeign’s.

Alocalτ
[x−y]
n:m Aforeign Represents a certain translation from Alocal to Aforeign. n:m represents the

cardinality of the translation, where we have n Alocal’s and m Aforeign. [x− y] represents

the editing formula from the source to the target. Note that Alocalτ
[x−y]
n:m Aforeign implies
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Alocal 7−→n:m Aforeign, but not the converse as τ contains translation information that 7−→

does not have.

Rjoin The relation formed by joining all of the relations pointed to by NET().

σRforeign∀τ(n:1)R
local−ex
x

To enhance the readability of certain complex querying operations, we use

∀ as a short hand meaning for all available mappings and / or translations with the cur-

rent plan between Rforeign and Rlocal−ex
x . Here the expression would read ‘apply all n : 1

translations that translate any element of Rforeign to Rlocal−ex
x ’.
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