
Multi column matching for database schema translation

Robert Warren, Frank Wm. Tompa
School of Computer Science, University of Waterloo

{rhwarren, fwtompa}@uwaterloo.ca

Technical Report CS-2005-24
August 19, 2005

Abstract

We describe a generalised method for discovering complex schema matches involving multiple
database columns. The method does not require linked data and is capable of dealing with both
fixed- and variable-length field columns. This is done through an iterative algorithm which learns
the correct sequence of concatenations of column substrings in order to translate from one database
to another. We introduce the algorithm along with examples on common database data values and
examine its performance on real-world and synthetic data sets.

1 Introduction

In our work we wish to find a general purpose method capable of resolving complex schema matches
requiring information from a number of columns within a database. While heuristics can be attempted
for simple translation operations such as concat (firstname, lastname) = fullname, no general purpose
solution has yet been devised capable of searching for and generating translation procedures.

Specifically, we wish to find a method capable of discovering asolution for problems as diverse
as unknown date formats, unlinked login names, field normalisations and complex column concatena-
tions. Thus, we wish to find a generalisable method capable ofidentifying complex schema translations
of the sort “4 leftmost characters of columnlastname + 4 rightmost characters of columnbirthdate
= columnuserid”.

In spite of the high computational cost of searching for a solution, it is affordable when compared
with the time that would need to be spent by humans. It is not uncommon for commercial databases to
have thousands of tables with several hundred columns per table; under these conditions computational
support for database integration becomes critical.

This paper describes a method that can be used to identify complex, multi-column translations from
one database to another in the form of a series of concatenations of column substrings. The algorithm
will discover translations as long as there exists some overlap between the translated schema values
and the targeted schema values.

2 Previous work

Rahm and Bernstein present a general discussion and taxonomy of column matching and schema
translation [1, 2]. They classify column matchers as having“high cardinality” when able to deal with
translations involving more than one column. These types ofmatchers have been implemented on a
limited basis in the CUPID system [3] for specific, pre-codedproblems of the form “concatenate A
and B”.

As a means of abstracting away from the specific data being processed, Doan proposed “format
learners” [4]. These infer the formatting and matching of different datatypes, but the idea has not
been carried forward to multiple columns. Recently, Carreira and Galhardas [5] looked at conversion
algebras required to translate from one schema to another and Fletcher [6] used a search method to
derive the matching algebra. Embley et al. [7] explored methods of handling multi column mappings
through full string concatenations using an ontology driven method.

The IMAP system [8] takes a more domain oriented approach by utilising matchers that are de-
signed to detect and deal with specific types of data, such as phone numbers. This approach to finding
schema translations for numerical data using equation discovery is particularly novel.

We expand on this idea in our approach, but intend to generalise it to string operations without
assuming that examples are provided or that linking relationships have been pre-established across
databases. We do this by approaching the problem of schema matching and translation through
an instance-based approach where the actual values of columns are translated and matched across
databases.

2

Source Target
first middle last ... Login

robert h kerry ... nawisema
kyle s norman ... jlmalton

norma a wiseman ... rhkerry
...

amy l case ... alcase
josh a alderman ... ksokmoan
john l malton ... ksnorman

Table 1: The first sample schema translation problem where login names must be matched to the
columns of an unlinked table.

3 Proposed methodology

Let us assume that we have an unordered tableT1 that we term the source table, with columnsB1,
B2, ..., Bn. These columns may or may not be relevant to the translation.Similarly, we have an
unordered aggregate tableT2, named the target table, with a single aggregate columnA. We attempt to
find a solution such that the values in the target columnA can be defined as a series of concatenation
operations in the manner ofA = ω1 + ω2 + ... + ωi, whereωi represents a substring of one of the
source columnsBj , and all values are taken from the same row inT1.

In our formalised model we assume that the tablesT1, T2 and their respective columns have been
previously chosen by an algorithm or heuristics that present potential pairs of tables one by one. Our
work is to be implemented as part of a larger database integration framework which applies different
integration methods and selects the lowest cost solution.

Furthermore, most current relational databases provide access to the relations using their own ex-
tensions to Structured Query Language (SQL). With portability and generalisation in mind, we follow
the lead of Koudas et al. [9] and restrict our method to operations that can be implemented with basic
SQL commands to ensure the practicality of the resulting algorithm.

The method functions in four steps: selecting an initial source columnBk, creating an initial
translation recipe that isolates a substringωx from it, iterating for additional columns, and finally
ranking the translation formulas for best matching ability. The overall algorithm is shown in the
Appendix as Algorithm 1.

In the first step, all source columns are scored to identify those most likely to be part of the target
column at a certain substring size. This information is usedto create an initial translation formula
which partially maps the source column to the target column.Using this coarse translation formula,
we can then iterate through additional selections until either a complete translation formula has been
found, or the addition of columns no longer provides additional information.

In the following sections, we review each of these steps in detail while following an example based
on the data contained with Table 1.

3.1 Beginning the search

In order to choose candidate columns and generate possible translation formulas for very large tables,
we need a method to sample values from the source columns. Theobjective is not to get an optimal
column selection as much as identifying a feasible one. In effect we are trying to “bootstrap” the
translation with a single useful column from which the search can begin. We present here a heuristic
which we use to make this initial selection, with the detailed algorithm typeset in the Appendix as
Algorithm 2.

In Table 1, we would prefer to pick the columnlast which matches, on average, the most caracters
from the target column. This would seem to be a simple problem, but because of computational costs
we can only afford to “score” a sample of the values of each column. This must also be done in a way

3

that can be implemented using SQL.
We address this problem by sampling a fraction of the unique values of source columnBk and

then selecting candidates from target columnA based on all the possible sequences of consecutive
characters of lengthq (that is, we use aq-gram approach [10]). As an example, for a row value of
possible and a search length of 4 characters, we could extract the values from ColumnA that contain
any of the substrings “poss”, “ossi”, “ssib”, “sibl” or “ible”. In general we getn − q + 1 substrings of
lengthq from a string of lengthn.





t
∑

j=1

HitCount(j)

RecordCount(Bi) ∗ CharCount(j)





q

(1)

This formula (1) computes a score where the number of matchesfor a column (Bi) based on the
length of the common substring and the average record overlap between both tables. Experimentally,
we chose a value of2 for theq parameter.

For each candidate source column, we sample a pre-determined fraction of the distinct values
within the column, yieldingt values, and use each of them to yield a set ofn − qi + 1 length search
keys for the target column. We taken steps to prevent statistical outliers from overwhelming all other
rows by attempting to normalise the result.

The number of distinct hits for each key (HitCount(j)) is averaged over the length of the key
(CharCount(j)) and normalised to the total count of distinct values (RecordCount(Bi)) within the
source column. Lastly, we then take this value to the power ofq, to take into account the decrease in
probability of this string occurring randomly.

0

5000

10000

15000

20000

25000

30000

35000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Score

Sample percentage

First Name

3
33

33
33
3333

3333333
33

3 3 3 3 3 3

3

Middle Name

+

+

++

+

+
++
++
++++

++++++ + + + + + +

+
Last Name

2

2
222

2
222

2222
222

2222 2 2 2 2 2 2

2

Random text

×

×

×
××

×
×
×
×××
××××××××× × × × × × ×

×
Random Number

44444444444444444444 4 4 4 4 4 4

4
Address

???????????????????? ? ? ? ? ? ?

?
Timestamp

bbbbbbbbbbbbbbbbbbbb b b b b b b

b

Figure 1: Sampling size is not critical and good result can beobtained with as little as 10% of the total
unique rows.

Table 2 and Figure 1 represent empirical experiments computed on the sample dataset (Table 1),
sized at 8,000 rows. To verify the correctness of the method we added several noise columns including:
a column containing random text, a time-and-date value, a random number and a random street address.

4

Column Score
first (B1) 14194.4
middle (B2) 12391.7
last (B3) 16374.0
rnd text 6151.6
timedate 354.0
rnd numb 792.9
rnd addr 5505.3

Table 2: Score results generated with formula (1) with a 10% sample.

The selection of aq-gram size of 2 and using 10% of the distinct values in each source column
resulted in acceptable performance for most of the experiments we attempted, though future work
should automate the optimal selection of these parameters.

The scores resulting from formula (1) are used to create a preference order with which the source
columns should be considered for generating an initial translation formula. The formula works sur-
prisingly well even with a very small sample in large data sets. Figure 2 plots the results of the column
selection formula on a dataset containing over 700,000 concatenated first and last names. Even with a
very small sample of several hundred rows, the column selection order is accurate.

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

0 500 1000 1500 2000 2500

Score

Rows sampled

Random text

3 3 3 3

3
3 3 3 3 3 3

3 3

3

Last name

+

+
+ +

+
+ + + + + + + +

+
First name

2

2
2

2 2
2

2
2

2 2 2 2 2
2

Address

× × × × × × × × × × × ×

×

Figure 2: With large datasets (700K rows) the formula does well with very small samples.

3.2 Creating an initial translation formula

With columnBk selected as a starting point, we next create a partial translation formula by comparing
sampled values from columnsBk andA. We use equal distance sampling of unique columns values
by first selecting a value and then skipping a number of rows before selecting a new one.

An edit-distance method is used to search for commonly repeating patterns between pairs of values
selected from these two columns from which we generate a “recipe” that translates specific substrings
of values in the sourceBk to values in the target columnA. The actual insertion, deletion and copy

5

costs assigned to the edit distance methods have not been shown to be critical within our experiments,
where we implemented a simple edit distance method as described by Monge [11]. However, any
enhancement to the ability to recognise the longest common substring is likely to lower the amount of
noise, and increase our capacity of making an accurate recipe choice. We used here a very simple edit
distance method supporting basic case-insensitive stringoperations such as cut, copy and insert. With
little effort, advanced operations such as caracter set translation can also be added.

The scoring formula of Section 3.1 has already ensured that an overlap exists between values in
these two columns. Given a valuekeyj from Bk, we can again select all values fromA that match
at least one q-gram fromkeyj. For any one of these candidates target valuesvi, we can identify all
possible substring translations that would mapkeyj to vi, which we call “recipes”. We repeat this
process for the sampled values ofBk while collating the occurrence of the different possible recipes
as in Algorithm 3. Thus, if the value ofkeyj was “warner” and the values ofvi was “rhwarner”, the
recipe would be two unknow characters followed by characters 1 through 6 ofkeyj.

For fixed-field data, it is straight-forward to identify the commonly repeating recipes because the
absolute locations of the overlapping substrings will always align across recipes. Any superfluous
matches (that is, other characters matching the overlapping field) will occur infrequently enough that
the outlier recipes can be discarded.

For variable-length fields, however, the problem is slightly more difficult as the absolute locations
of the matching values are not aligned. The relative ordering in which the matching and non-matching
substrings are found does however remain consistent. It is by making use of this property that we are
able to design a solution process capable of dealing with both fixed-length and variable-length data
simultaneously.

To characterise the data from the edit-distance algorithm,we define the concept of a “region” as a
series of left-to-right contiguous characters from the source column, or a specificwx element. Should
a character repeat, or the character sequence be broken, a separate region is created. Algorithm 4
outlines the process used to convert the edit-distance recipes to a set of translation formulas.

As each recipe is processed, its known and unknown charactersequences are translated into a
series of regions. Each regionwx represents a string element either from an unknown source orfrom
specific character positions within a designated source column. We term the sequence of these regions
ω1+ω2+...+ωi to be a translation formula which provides a partial method to translate the information
from the setB of source columns to the target columnA.

These translation formulas are collated as they are generated from the recipes, but their occurrence
counts are incremented by the score of their original recipe. In the specific case where a region within
a recipe ends on the last character of a source column, two translation formulas are generated: one
with the original absolute column character positions and asecond with an end-of-string marker. This
specific exception allows us to deal with non-fixed length columns by allowing us to refer to relative
positions within the source columns.

Table 3 presents typical regions generated using some of thevalues from our running example. The
typesetting convention used is% for any unmatched region andcolumn[n] for matched characters,
wheren refers to thenth character of the source column namedColumn.

The translation formulas are collated and the most frequently occurring translation is selected.
This partial translation then becomes the starting point for a search for additional regions within the
translation formula.

3.3 Selecting additional columns

We now begin an iterative process which will search for columns matching the unknown regions within
the translation formula. Because the source columns are related through tableT1, we are able to
retrieve associated values for any column that could form part of the same target column value. It is
the relation that allows us to restrict our search to values and columns likely to form part of the target
column translation.

We search for additional columns by considering each potential column, generating alternate trans-
lation formulas based on the obtained recipes and selectingthe highest scored translation formula for

6

Column Edit distance recipe
B3 A

warner rhwarner %B3[123456]
or %B3[1-n]

klwarder %B3[123]%B3[56]
or %B3[123]%B3[5-n]

ghkarer %B3[23]B3[56]
or %B3[23]B3[5-n]

amy laramy %B3[1]%B3[123]
or %B3[1]%B3[1-n]

amyrose B3[123]%
or B3[1-n]%

camyro %B3[123]%
or %B3[1-n]%

wang mkwang %B3[1234]
or %B3[1-n]

wayne opwayne %B3[12345]
or %B3[1-n]

Table 3: Sample edit distance recipes for the login data, whereB3 is used in place of lastname.

source target Translation
B3 B1 A Partial Candidate

kerry robert rhkerry %b3[1-n] b1[1]%b3[1-n]
robert klkerry %b3[1-n] %b3[1-n]
robert gkerry %b3[1-n] %b3[1-n]

wyn mike mkwyn %b3[1-n] b1[1]b1[3]b3[1-n]
kyle otto opkyle %b3[1-n] b1[1]%b3[1-n]

Table 4: Translation formulas are added to based on partial edit distance recipes

all considered columns. For each considered candidate column we begin by sampling the relation
joining the columns already assigned to the translation as well as the candidate column.

As done previously, we sample a percentage of the number of unique relation values in equidistant
intervals (we used 10% of the distinct rows). Using this sample, we form a search expression based
on the current partial translation formula which will retrieve target column values matching the known
regions.

For example, for the recipe%last[1-n] and a source column value ofwayne, our search expression
would then beselect A from T2 LIKE ’%wayne’. The set of target column values returned is then
analysed with respect to the source column under consideration, again using an edit distance method.
We do this while ensuring that any target column character previously allocated to a known region
cannot be matched to a candidate column value.

Thus if we assume that a target column value ofopwayne was retrieved using the search ’%wayne’,
we would only allow the ’op’ characters to be matched by the edit distance method as in Table 4. In
essence we are constraining the search to a specific area of the candidate string while enforcing the
record link between related source column values from one tuple. This enforcement is what enables
us to extract a valid translation recipe from several independent edit-match methods under noisy con-
ditions.

It is also possible to further restrict the retrieval of unlikely values from the database by making use
of the SQLposition function and ensuring that at least oneq-gram of the candidate column is present
in order for a value to be retrieved.

7

The translation of the collated recipes to a new set of candidate translations is done slightly dif-
ferently than previously done in Algorithm 4. In the modifiedAlgorithm 5, the sections previously
allocated to known regions are not matched to any candidate column.

The resulting translation formulas are then collated and scored according to a second scoring for-
mula (2) which scores the translation (Tj) based both on their occurrence and the source column (Bi)
in use.

NormalisedCount(Tj)

max(1, avgcolumnlength(Bi) − 2)
(2)

The formula scores the candidate translations based on a per-column normalised occurrence score,
but also penalises the score for large width columns. We found experimentally that with large and wide
columns of random characters(e.g. columnrtext, the resulting serendipitous matches would increase
noise to unacceptable levels. Hence a penalty term (max(1, avgcolumnlength(Bi) − 2)) was added
to the formula to account for these cases.

The candidate translations are then ranked according to scores and the top ranked formula is re-
tained. A question is whether we should make use of the 2nd or 3rd ranked translations in case of
failure. At this point we have concentrated our research on obtaining a single valid translation for-
mula, but plan to look at multiple, simultaneous formulas.

This iterative process continues until a translation formula is completed which has no unknown
regions and which provides a complete method to translate the information fromT1 to T2.

3.4 Experimental results

We used this methods on several different data sets, beginning with a listing of users real names and
Unix login names (Table 1) taken from Waterloo’s Faculty of Mathematics undergraduate computing
systems. Both tables have the same number of rows (about 7,000) and 3 different translation formulas
are known to exist to create login names from the actual names. The most common of the login name
generation formulas (about 3,000 rows) was returned by the search aslogin = first[1-1] + last[1-n],
and the equivalent SQL translation query was generated as:

select substring(first from 1 for 1) || last as login from table
where first is not null and char length(substring(first name from 1
for 1)) = 1 and last name is not null and char length(last name) ≥

1
If we remove from both datasets the records translated by this formula, then the method returns the

next dominant translationlogin = first[1-1] + middle[1-1] + last[1-n] which covers about 1,200 rows.
Note that within our implementation the resulting SQL statements enforce the assumptions of the

translation formulas. The source columns utilised by the formula cannot be null and they must have the
required string lengths to ensure that the translation formula provides a proper mapping and translation
from one table to another.

Table 5 was used for further experiments using 10,000 randomly generated time-stamps which
were then merged into a single string. In this case we used simple concatenations because of the small
width of the fields.

The same background ”noise“ columns were used as for the firstdataset in Table 1. The returned
SQL translation query was:

select substring(hour from 1 for 2) || substring(minutes from 1 for
2) || substring(seconds from 1 for 2) as fulltime from table where hour
is not null and char length(substring(hour from 1 for 2)) = 2 and minutes
is not null and char length(substring(minutes from 1 for 2)) = 2 and
seconds is not null and char length(substring(seconds from 1 for 2))
= 2

8

Source Target
secs. mins. hrs. ... time
55 59 02 ... 345407
43 23 05 ... 330011
12 55 07 ... 135741
...
33 00 11 ... 004107
34 54 07 ... 192609

Table 5: Time-stamps represented in single and multiple columns.

Source Target
first last ... full

robert kerry ... robertkerry
kyle norman ... kylenorman

norma wiseman ... normawiseman
...

amy case ... amycase
josh alder ... joshalder
john galt ... johngalt

Table 6: Merged names dataset.

We used a list of names to create Table 6 where the first and lastnames are merged into a single
column. The table is about 700,000 rows long with about 70,000 unique values in both source columns.
The same “noise” columns as in Table 1 were used to verify thatour was functioning properly. The
target columnfull was generated using the translationfull = first[1-n] + last[1-n].

As expected, the SQL translation query returned was:

select first || last as full from table where first is not null and
char length(first) ≥ 1 and last name is not null and char length(last name
) ≥ 1

Beyond the two baseline examples, we also used the DBLP [12] article and Citeseer [13] citation
indexes to provide additional real-world text data. The DBLP dataset (article only) contains about
233,000 records and the Citeseer dataset contains about 526,000 records. Even though it was ex-
pected that erroneous or missing column information would be in both datasets, no data-cleaning (or
normalisation) was performed except for a global conversion to lowercase.

For both datasets we created a new target columncitation in the form ofyear [1-n] + title[1-n]
+ first author[1-n] and inserted it into a new target table. We then used our method on the generated
target table and the source columns to extract what it believed to be the translation formula. As ex-
pected, the correct translation formula used to create the synthetic target columns was extracted for
both datasets.

As a further test of the method’s resilience to noisy data, wethen compared thecitation column
from the DBLP dataset to the source columns from the Citeseerdataset using our method. This is a
difficult problem because both datasets are noisy and unlikely to match exactly for most records. This
increases the uncertainty in extracting a translation formula because of the amount of noise introduced
into the edit distance method.

As a gross means of estimating the amount of overlap between both datasets, we counted the
number of common titles (exact match) between both datasetsto be about 2,480. With a source column
sample size of 1%, the method returned the translation formula year [1-n] + title[1-n] + second
author[1-n] which translated about 378 rows between both tables. Choosing the second author was

9

not our expected translation ofyear [1-n] + title[1-n] + first author[1-n], which would have translated
about 714 rows, and we carefully looked at both datasets to establish why.

Both translation formulas are “correct” in that we confirmedthrough inspection that they translated
the proper row instances between both datasets.

Suprisingly, the translation formula returned by the method converts a block of articles within the
Citeseer dataset that have their first author and second author inverted. In this case, we are in the odd
situation of correctly matching a sizeable number of incorrectly loaded records. Should we remove
these erroneous rows, then the method would return the expected translation formula.

A concern is why a translation was returned which occurs for half as many rows as the expected
translation. This can be explained by the relatively low number of common records coupled with a
sample of 1% of the source columns. By chance the sampling missed locating the dominant, but still
rare, translation.

Additionally, a series of experiments were conducted usingrandom sets of dictionary words as
column data and a randomly generated translation formulas.We used our method to attempt to recover
the translation formula from a both tables with 10,000 rows.

While we succeeded at identifying relevant columns in about60% of cases for 500 experiments,
we noticed that the creation of the translation formula for asingle column is sometimes incomplete in
high noise environments.

Hence, while the translation may be partially correct, it may be missing a few characters from
the source columns, especially when dealing with variable length columns. In our current approach,
we are unable to recover from this because we do not revisit columns and the translation remains
incomplete. We plan to modify Algorithm 5 to recognise such situations and properly correct the
translation formula.

4 Conclusion

Whereas previous approaches took specialised domain-specific matchers to form the matches and
translations, we present here a generalised algorithm for most string-based matches. This method
attempts to find a translation formula that composes a targetcolumn from the concatenation of an arbi-
trary number of column substrings. We do this without user training or explicit linkage between table
rows and experimental results validate the approach for realistic data.

Because the method matches complex column translations andbecause it is computationally ex-
pensive, it must function within a framework of a schema integration system. We make an explicit
assumption that a certain overlap exists between both datasets and that the framework is able to pro-
vide us with both the target column and a set of candidate columns. Experimentally, we determined
that the size of the overlap is not critical.

We are currently working on the discovery of separator constants such as spaces, slashes and
hyphens within the translation formula as well as the recognition of space-padded fields. So far, we
have had promising results in extracting the separator by querying the unknown regions of the target
column instances.

Furthermore, we wish to automate the selection ofq-gram and sampling parameters within the
method. Another promising research direction is the identification of missing information within the
source table and the creation of translation columns to support direct record linkage between databases.

10

References

[1] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema matching,”The VLDB
Journal, vol. 10, no. 4, pp. 334–350, 2001.

[2] E. Rahm and P. Bernstein, “On matching schemas automatically,” Tech. Rep. MSR-TR-2001-17,
Microsoft Research, Redmond, WA, February 2001.

[3] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic schema matching with cupid,” inVLDB
’01: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 49–58,
Morgan Kaufmann Publishers Inc., 2001.

[4] A. Doan, P. Domingos, and A. Y. Halevy, “Reconciling schemas of disparate data sources: a
machine-learning approach,” inSIGMOD ’01: Proceedings of the 2001 ACM SIGMOD interna-
tional conference on Management of data, pp. 509–520, ACM Press, 2001.

[5] P. Carreira and H. Galhardas, “Execution of data mappers,” in IQIS ’04: Proceedings of the 2004
international workshop on Information quality in information systems, (New York, NY, USA),
pp. 2–9, ACM Press, 2004.

[6] G. H. L. Fletcher, “The data mapping problem: Algorithmic and logical characterizations,” inIn-
ternational Special Workshop on Databases For Next Generation Researchers (SWOD) at ICDE
2005, 2005.

[7] D. W. Embley, L. Xu, and Y. Ding, “Automatic direct and indirect schema mapping: experiences
and lessons learned,”SIGMOD Rec., vol. 33, no. 4, pp. 14–19, 2004.

[8] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos,“imap: discovering complex
semantic matches between database schemas,” inProceedings of the 2004 ACM SIGMOD inter-
national conference on Management of data, pp. 383–394, ACM Press, 2004.

[9] N. Koudas, A. Marathe, and D. Srivastava, “Flexible string matching against large databases in
practice.,” inVLDB (M. A. Nascimento, M. T.Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley,
and K. B. Schiefer, eds.), pp. 1078–1086, Morgan Kaufmann, 2004.

[10] E. Ukkonen, “Approximate string-matching with q-grams and maximal matches,”Theor. Comput.
Sci., vol. 92, no. 1, pp. 191–211, 1992.

[11] A. E. Monge and C. Elkan, “An efficient domain-independent algorithm for detecting approxi-
mately duplicate database records.,” inDMKD, pp. 0–, 1997.

[12] “Dblp citation index,” May 2005. http://dblp.uni-trier.de/xml/.

[13] “Citeseer. ist scientific literature digital library,” May 2005. http://citeseer.ist.psu.edu/oai.html.

A Algorithms

11

Data: For a setB of columnsB1, B2, ...,Bn and targetA
Find columnBstart most likely part ofA;
Generate a translationτ partially translatingBstart to A;
while Transformation τ has unknowns do

foreach Columns Bk in B1, B2, ..., Bn do
Sample columns fromT1 and select values ofA matching partial translationτ ′;
Generate a newτ ′ partially translatingBk to A;

end
Score eachτ ′, Bk;
Insert highest ranked into Transformationτ ;

end

Algorithm 1: Overall algorithm

setBbest to null;
setscorebest to 0;
foreach column Bk of T1 do

count distinct values ofBk asdcount;
hitcount =0;
for j=1 to dcount/10 Step dcount/90

dcount/10−1
do

get valuekey from Bk ;
localc = countT2 whereA like q-grams ofkey;

hitcount + =
localc

length(key)
;

end

score(Bk) =

(

HitCount

dcount/10

)q

;

if score(Bk)> scorebest then
scorebest = score(Bk);
Bbest = Bk;

end
end

Algorithm 2: Initial column selection using a fixed q gram size

Data: A candidate columnBk.
Result: Edit distance recipesR.
count distinct values ofBk asdcount;
Recipes = null;
for j=1 to dcount/10 Step dcount/90

dcount/10−1
do

get valuekey from Bk ;
Create setA from T2 whereA like q-grams ofkey;
foreach candidate in A do

RecipeR = edit-distance(key, candidate) ;
searchR for Recipe matchingR ;
if found then

increase count ofR entry by 1 ;
else

create new entry inR with score 1;
end

end
end

Algorithm 3: Creating an initial set of recipes from a candidate column.

12

Data: Edit distance recipesR.
Result: Partial translation formulasT .
foreach R in R do

create emptyT ;
begin region ;
foreach char in R do

if key chars still in sequence then
region continues ;

else if 1st char is from key then
region continues ;

else if region still unknown then
region continues ;

else if 1st char unknown then
region continues ;

else if known region ends on key boundary then
clone region ;
mark cloned region as end-of-string;
link both regions to end ofT chain ;
begin region ;

else
(un)known region or recipe ends

end
link regions to end ofT chain ;

end
searchT for translation matchingT ;
if found then

increase count ofT entry by 1 ;
else

create new entry inT with score 1;
end

end

Algorithm 4: Generation of translation formulas from recipes.

13

Data: A set of candidate columnsB, a partial translationT
Result: A new translationT
Init Tbest;
foreach column Bi in B do

R = AlgorithmSix(Bi, T);
foreach R in R do

create emptyTnew ;
begin region ;
foreach char in R do

if key chars still in sequence then
region continues ;

else if 1st char froms part of T then
region continues ;

else if region still unknown then
region continues ;

else if 1st char unknown then
region continues ;

else if known region ends on key boundary then
clone region ;
mark cloned region as end-of-string;
link both regions to end ofTnew chain ;
begin region ;

else
(un)known region or recipe ends

end
link regions to end ofTnew chain ;

end
searchT for translation matchingTnew ;
if found then

increase count ofT entry by 1 ;
else

create new entry inT with score 1;
end
foreach Tnew in T do

ScoreTnew on formula 2;
end
if Score(Tnew) > Score(Tbest) then

Tbest = Tnew;
else

end
end
returnTbest;

end

Algorithm 5: Selecting additional columns for a partial translation.

14

Data: A candidate columnBk, a candidate translationT
Result: Edit distance recipesR.
for Bk and all columns in T do

count distinct relations asdcount;
end

for j=1 to dcount/10 Step dcount/90

dcount/10−1
do

Initialize SearchPattern;
foreach region in T do

if region is known then
Get value of region column;
Extract substring from column;
Add substring to SearchPattern;

else
SearchPattern =+ ’%’;

end
end
get valuekey from Bk ;
Create setA from T2 whereA like SearchPattern and containsq-grams ofkey;
foreach candidate in A do

Apply SearchPattern mask to edit-distance;
RecipeR = edit-distance(key, candidate) ;
searchR for Recipe matchingR ;
if found then

increase count ofR entry by 1 ;
else

create new entry inR with score 1;
end

end
end

Algorithm 6: Creating edit distance recipes for a new candidate column.

15

