Multi column matching for database schema translation

Robert Warren, Frank Wm. Tompa
School of Computer Science, University of Waterloo
{rhwarren, fwtompa@uwaterloo.ca

Technical Report CS-2005-24
August 19, 2005

University of

Waloo
b

Abstract

We describe a generalised method for discovering complesmsa matches involving multiple
database columns. The method does not require linked ddtés ampable of dealing with both
fixed- and variable-length field columns. This is done thtoag iterative algorithm which learns
the correct sequence of concatenations of column substiingrder to translate from one database
to another. We introduce the algorithm along with examples@mmon database data values and
examine its performance on real-world and synthetic data se

1 Introduction

In our work we wish to find a general purpose method capablesaflving complex schema matches
requiring information from a number of columns within a detae. While heuristics can be attempted
for simple translation operations such as concat (firstndastame) = fullname, no general purpose
solution has yet been devised capable of searching for ametgkng translation procedures.

Specifically, we wish to find a method capable of discoverirsplation for problems as diverse
as unknown date formats, unlinked login names, field nosattins and complex column concatena-
tions. Thus, we wish to find a generalisable method capaliieofifying complex schema translations
of the sort “4 leftmost characters of colunastname + 4 rightmost characters of coluntirthdate
= columnuserid”.

In spite of the high computational cost of searching for aisoh, it is affordable when compared
with the time that would need to be spent by humans. It is nobomimon for commercial databases to
have thousands of tables with several hundred columnslpler tander these conditions computational
support for database integration becomes critical.

This paper describes a method that can be used to identifgleamulti-column translations from
one database to another in the form of a series of concatasaif column substrings. The algorithm
will discover translations as long as there exists somelapdretween the translated schema values
and the targeted schema values.

2 Previouswork

Rahm and Bernstein present a general discussion and tayoaboolumn matching and schema
translation [1, 2]. They classify column matchers as hatimgh cardinality” when able to deal with
translations involving more than one column. These typesatchers have been implemented on a
limited basis in the CUPID system [3] for specific, pre-cogedblems of the form “concatenate A
and B".

As a means of abstracting away from the specific data beingepsed, Doan proposed “format
learners” [4]. These infer the formatting and matching dfedent datatypes, but the idea has not
been carried forward to multiple columns. Recently, Cagrand Galhardas [5] looked at conversion
algebras required to translate from one schema to anotldeFlatcher [6] used a search method to
derive the matching algebra. Embley et al. [7] explored més$iof handling multi column mappings
through full string concatenations using an ontology drimeethod.

The IMAP system [8] takes a more domain oriented approachtiiging matchers that are de-
signed to detect and deal with specific types of data, such@sepnumbers. This approach to finding
schema translations for numerical data using equatiodsy is particularly novel.

We expand on this idea in our approach, but intend to geserdlito string operations without
assuming that examples are provided or that linking relatigps have been pre-established across
databases. We do this by approaching the problem of schertehimg and translation through
an instance-based approach where the actual values of eslame translated and matched across
databases.

Source Target
first | middle last Login
robert h kerry ... || nawisema
kyle S norman | ... | jimalton
norma a wiseman| ... rhkerry
amy I case alcase
josh a alderman| ... || ksokmoan
john I malton | ... || ksnorman

Table 1. The first sample schema translation problem wheg@ Ibames must be matched to the
columns of an unlinked table.

3 Proposed methodology

Let us assume that we have an unordered t@plthat we term the source table, with columBs,

Bs, ..., B,. These columns may or may not be relevant to the translat®milarly, we have an
unordered aggregate taldle, named the target table, with a single aggregate coldme attempt to
find a solution such that the values in the target colitnean be defined as a series of concatenation
operations in the manner of = wi + ws + ... + w;, Wherew; represents a substring of one of the
source columnsg3;, and all values are taken from the same roWin

In our formalised model we assume that the tafilgsl, and their respective columns have been
previously chosen by an algorithm or heuristics that pregetential pairs of tables one by one. Our
work is to be implemented as part of a larger database irttegrixamework which applies different
integration methods and selects the lowest cost solution.

Furthermore, most current relational databases providesado the relations using their own ex-
tensions to Structured Query Language (SQL). With poiitsi@ihd generalisation in mind, we follow
the lead of Koudas et al. [9] and restrict our method to oj@matthat can be implemented with basic
SQL commands to ensure the practicality of the resultingritlgm.

The method functions in four steps: selecting an initialrseuwcolumnBy, creating an initial
translation recipe that isolates a substring from it, iterating for additional columns, and finally
ranking the translation formulas for best matching ahilifyhe overall algorithm is shown in the
Appendix as Algorithm 1.

In the first step, all source columns are scored to identifgéimost likely to be part of the target
column at a certain substring size. This information is ugedreate an initial translation formula
which partially maps the source column to the target colutdsing this coarse translation formula,
we can then iterate through additional selections untilezie complete translation formula has been
found, or the addition of columns no longer provides add#ianformation.

In the following sections, we review each of these steps faib&hile following an example based
on the data contained with Table 1.

3.1 Beginning the search

In order to choose candidate columns and generate possihidtion formulas for very large tables,
we need a method to sample values from the source columnsobijbetive is not to get an optimal
column selection as much as identifying a feasible one. flecefve are trying to “bootstrap” the
translation with a single useful column from which the sbazan begin. We present here a heuristic
which we use to make this initial selection, with the dethiéégorithm typeset in the Appendix as
Algorithm 2.

In Table 1, we would prefer to pick the coluntast which matches, on average, the most caracters
from the target column. This would seem to be a simple proplrmbecause of computational costs
we can only afford to “score” a sample of the values of eachrool. This must also be done in a way

that can be implemented using SQL.

We address this problem by sampling a fraction of the unicalees of source columm;, and
then selecting candidates from target colurhiased on all the possible sequences of consecutive
characters of length (that is, we use g-gram approach [10]). As an example, for a row value of
possible and a search length of 4 characters, we could extract thewv&élam ColummA that contain
any of the substrings “poss”, “ossi”, “ssib”, “sibl” or “ibl'. In general we get — ¢ + 1 substrings of
lengthq from a string of lengthn.

i HitCount(j) 1)
RecordCount(B;) * CharCount(j)

Jj=1

This formula (1) computes a score where the number of mafonescolumn (8;) based on the
length of the common substring and the average record @vbdaveen both tables. Experimentally,
we chose a value c&ffor theq parameter.

For each candidate source column, we sample a pre-detatririetion of the distinct values
within the column, yielding values, and use each of them to yield a set of ¢; + 1 length search
keys for the target column. We taken steps to prevent statisiutliers from overwhelming all other
rows by attempting to normalise the result.

The number of distinct hits for each ke¥i (tCount(j)) is averaged over the length of the key
(CharCount(j)) and normalised to the total count of distinct valuBgordCount(B;)) within the
source column. Lastly, we then take this value to the powert tf take into account the decrease in
probability of this string occurring randomly.

35000 | | |
L First Name—o—
: Middle Name- -+ -
30000 Last Name—=—]|
: Random text - x- - -
25000 Random Number—£&— |
: ~Address- * --
. Timestamp—e—
20000 |25 -
Score >
15000 R B g N e
10000 &% i
SOOOWWW*?; """ Xri-ze Xei-q X N T X

s P e

0 0.05 0.1 015 0.2 025 03 03 04 045 05
Sample percentage

Figure 1: Sampling size is not critical and good result canlitained with as little as 10% of the total
unigue rows.

Table 2 and Figure 1 represent empirical experiments comalpon the sample dataset (Table 1),
sized at 8,000 rows. To verify the correctness of the methmddded several noise columns including:
a column containing random text, a time-and-date valueydaa number and a random street address.

Column Score
first (B1) 14194.4
middle (Bo) || 12391.7

last (B3) 16374.0
rnd_text 6151.6
timedate 354.0
rnd.numb 792.9
rnd_addr 5505.3

Table 2: Score results generated with formula (1) with a 18%bde.

The selection of @-gram size of 2 and using 10% of the distinct values in eachcgocolumn
resulted in acceptable performance for most of the experisnee attempted, though future work
should automate the optimal selection of these parameters.

The scores resulting from formula (1) are used to create fegmce order with which the source
columns should be considered for generating an initialstegion formula. The formula works sur-
prisingly well even with a very small sample in large datas€fgure 2 plots the results of the column
selection formula on a dataset containing over 700,000atenated first and last names. Even with a
very small sample of several hundred rows, the column Sefeotder is accurate.

1.6e+09 T

Random text—<—
Lastname -+ -
1.4e+09 Fjrst name —=—
Address D O

1.2e+09- -

1e+09+- ot .
Score
8e+08 -
6e+08 -
4e+08 _
26"‘08 e (e D CEE R ¢ R PR (IR G G G4
0 500 1000 1500 200 2500

Rows sampled

Figure 2: With large datasets (700K rows) the formula dodswith very small samples.

3.2 Creating an initial trandlation formula

With column By, selected as a starting point, we next create a partial ataiosiformula by comparing
sampled values from columm3;, and A. We use equal distance sampling of unique columns values
by first selecting a value and then skipping a number of roierbeselecting a new one.

An edit-distance method is used to search for commonly tépepatterns between pairs of values
selected from these two columns from which we generate dpeéthat translates specific substrings
of values in the sourc8,, to values in the target columa. The actual insertion, deletion and copy

costs assigned to the edit distance methods have not been hbe critical within our experiments,
where we implemented a simple edit distance method as eschy Monge [11]. However, any
enhancement to the ability to recognise the longest commiostisng is likely to lower the amount of
noise, and increase our capacity of making an accurateerebipice. We used here a very simple edit
distance method supporting basic case-insensitive stpegations such as cut, copy and insert. With
little effort, advanced operations such as caracter seslxtion can also be added.

The scoring formula of Section 3.1 has already ensured thawarlap exists between values in
these two columns. Given a valkey; from By, we can again select all values framthat match
at least one g-gram fromey;. For any one of these candidates target vatyesve can identify all
possible substring translations that would miap; to v;, which we call “recipes”. We repeat this
process for the sampled values®f while collating the occurrence of the different possibleipes
as in Algorithm 3. Thus, if the value dfey; was “warner” and the values of was “rhwarner”, the
recipe would be two unknow characters followed by charactahrough 6 okey;.

For fixed-field data, it is straight-forward to identify theramonly repeating recipes because the
absolute locations of the overlapping substrings will alsvalign across recipes. Any superfluous
matches (that is, other characters matching the overlggigld) will occur infrequently enough that
the outlier recipes can be discarded.

For variable-length fields, however, the problem is slightlore difficult as the absolute locations
of the matching values are not aligned. The relative ordgrinvhich the matching and non-matching
substrings are found does however remain consistent. yt msaking use of this property that we are
able to design a solution process capable of dealing with fixéd-length and variable-length data
simultaneously.

To characterise the data from the edit-distance algoritiengefine the concept of a “region” as a
series of left-to-right contiguous characters from thersewolumn, or a specifiw,, element. Should
a character repeat, or the character sequence be brokepa@teeregion is created. Algorithm 4
outlines the process used to convert the edit-distancpastd a set of translation formulas.

As each recipe is processed, its known and unknown charsetprences are translated into a
series of regions. Each regian. represents a string element either from an unknown sourfreror
specific character positions within a designated souragwol We term the sequence of these regions
w1 +ws+...+w; to be a translation formulawhich provides a partial metlddanslate the information
from the set3 of source columns to the target colurdn

These translation formulas are collated as they are gextfratim the recipes, but their occurrence
counts are incremented by the score of their original redipthe specific case where a region within
a recipe ends on the last character of a source column, twsl&téon formulas are generated: one
with the original absolute column character positions asda@nd with an end-of-string marker. This
specific exception allows us to deal with non-fixed lengthuoois by allowing us to refer to relative
positions within the source columns.

Table 3 presents typical regions generated using some wéthes from our running example. The
typesetting convention usedd for any unmatched region ammblumn[n] for matched characters,
wheren refers to theath character of the source column nant@alumn.

The translation formulas are collated and the most fredp@tcurring translation is selected.
This partial translation then becomes the starting pointfeearch for additional regions within the
translation formula.

3.3 Sdecting additional columns

We now begin an iterative process which will search for calematching the unknown regions within
the translation formula. Because the source columns aatetethrough tabld}, we are able to
retrieve associated values for any column that could forrhgfahe same target column value. It is
the relation that allows us to restrict our search to valuesalumns likely to form part of the target
column translation.

We search for additional columns by considering each pistieadlumn, generating alternate trans-
lation formulas based on the obtained recipes and seletttengighest scored translation formula for

Column Edit distance recipe
B3 A
warner | rhwarner| %B3[123456]
or %Bs[1-n]
kiwarder | %B3[123]%B3[56]
or %B3[123]% B3[5-n]
ghkarer | %B3[23]B3[56]
or %B3[23]B3[5-n]
amy laramy | %B3[1]%B;5[123]
or %B3[1]% Bs[1-n]
amyrose| B3[123]%
or Bs[1-n]%
camyro | %B5[123]%
or %B3[1-n]%
wang | mkwang | %B3[1234]
or %B3[1-n]
wayne | opwayne| %B3[12345]
or %Bs3[1-n]

Table 3: Sample edit distance recipes for the login datarevBe is used in place of lagtame.

source target Translation
Bs By A Partial Candidate
kerry | robert|| rhkerry | %bs[1-n] | b1[1]%b3[1-n]
robert || klkerry | %b3[1-n] | %b3[1-n]
robert || gkerry | %bs[1-n] | %bs[1-n]
wyn | mike || mkwyn | %bs[1-n] | b1[1]b1[3]b3[1-n]
kyle | otto | opkyle | %bs[1-n] | b1[1]%b3[1-n]

Table 4: Translation formulas are added to based on padidistance recipes

all considered columns. For each considered candidatencole begin by sampling the relation
joining the columns already assigned to the translationedkas the candidate column.

As done previously, we sample a percentage of the numberigfi@melation values in equidistant
intervals (we used 10% of the distinct rows). Using this sieyywe form a search expression based
on the current partial translation formula which will retre target column values matching the known
regions.

For example, for the recipglast[1-n] and a source column valuewhyne, our search expression
would then beselect A from T: LIKE '%wayne’. The set of target column values returned is then
analysed with respect to the source column under consideyaigyain using an edit distance method.
We do this while ensuring that any target column charactevipusly allocated to a known region
cannot be matched to a candidate column value.

Thus if we assume that a target column valuepfayne was retrieved using the search '%wayne’,
we would only allow the 'op’ characters to be matched by thi¢ didtance method as in Table 4. In
essence we are constraining the search to a specific area oéididate string while enforcing the
record link between related source column values from opleturhis enforcement is what enables
us to extract a valid translation recipe from several indeleat edit-match methods under noisy con-
ditions.

Itis also possible to further restrict the retrieval of kel values from the database by making use
of the SQLposition function and ensuring that at least apgram of the candidate column is present
in order for a value to be retrieved.

The translation of the collated recipes to a new set of catdittanslations is done slightly dif-
ferently than previously done in Algorithm 4. In the modifiatjorithm 5, the sections previously
allocated to known regions are not matched to any candidétenn.

The resulting translation formulas are then collated amdestaccording to a second scoring for-
mula (2) which scores the translatidfi;§ based both on their occurrence and the source colugn (
in use.

NormalisedCount(Tj)
max (1, avgeolumnlength(B;) — 2)

)

The formula scores the candidate translations based on@penn normalised occurrence score,
but also penalises the score for large width columns. Wed@xperimentally that with large and wide
columns of random characters(e.g. colurtext, the resulting serendipitous matches would increase
noise to unacceptable levels. Hence a penalty tewm(1, avgcolumnlength(B;) — 2)) was added
to the formula to account for these cases.

The candidate translations are then ranked according tesemd the top ranked formula is re-
tained. A question is whether we should make use of the 2nddrahked translations in case of
failure. At this point we have concentrated our research lmmining a single valid translation for-
mula, but plan to look at multiple, simultaneous formulas.

This iterative process continues until a translation fdaris completed which has no unknown
regions and which provides a complete method to translatanfbrmation from’ to 75.

3.4 Experimental results

We used this methods on several different data sets, beginvith a listing of users real names and
Unix login names (Table 1) taken from Waterloo’s Faculty cditematics undergraduate computing
systems. Both tables have the same number of rows (abo)a60@ 3 different translation formulas
are known to exist to create login names from the actual naffesmost common of the login name
generation formulas (about 3,000 rows) was returned bydhech adogin = first[1-1] + last[1-n],
and the equivalent SQL translation query was generated as:

sel ect substring(first from1l for 1) || last as login fromtable
where first is not null and char_ength(substring(first_name froml
for 1)) =1 and last_nane is not null and char_ength(|ast_nanme) >
1

If we remove from both datasets the records translated bydhinula, then the method returns the
next dominant translatidiogin = first[1-1] + middle[1-1] + last[1-n] which covers about 1,200 rows.

Note that within our implementation the resulting SQL statats enforce the assumptions of the
translation formulas. The source columns utilised by thmfda cannot be null and they must have the
required string lengths to ensure that the translation @bemprovides a proper mapping and translation
from one table to another.

Table 5 was used for further experiments using 10,000 rahdgamerated time-stamps which
were then merged into a single string. In this case we useplsiooncatenations because of the small
width of the fields.

The same background "noise" columns were used as for thalfitaset in Table 1. The returned
SQL translation query was:

sel ect substring(hour from1 for 2) || substring(mnutes from1 for
2) || substring(seconds from1l for 2) as fulltime fromtable where hour
is not null and char 1 ength(substring(hour from1 for 2)) = 2 and m nutes
is not null and char 1 ength(substring(mnutes from1 for 2)) = 2 and
seconds is not null and char_ ength(substring(seconds from1l for 2))
=2

Source Target

secs.| mins. | hrs. | ... time
55 59 02 | ... || 345407
43 23 05 | ... || 330011
12 55 07 | ... || 135741
33 00 11 | ... || 004107
34 54 07 | ... || 192609

Table 5: Time-stamps represented in single and multiplerook.

Source Target
first last full
robert | kerry robertkerry
kyle norman | ... kylenorman
norma| wiseman| ... | normawisemar
amy case | ... amycase
josh alder | ... joshalder
john galt johngalt

Table 6: Merged names dataset.

We used a list of names to create Table 6 where the first anddasés are merged into a single
column. The table is about 700,000 rows long with about 7WGlque values in both source columns.
The same “noise” columns as in Table 1 were used to verifydhaivas functioning properly. The
target columriull was generated using the translatfah = first[1-n] + last[1-n].

As expected, the SQL translation query returned was:

select first || last as full fromtable where first is not null and
char_length(first) > 1 and last_nane is not null and char_ength(|ast_nane
) > 1

Beyond the two baseline examples, we also used the DBLP f[li2leaand Citeseer [13] citation
indexes to provide additional real-world text data. The PBdataset (article only) contains about
233,000 records and the Citeseer dataset contains abo(@i0B2@cords. Even though it was ex-
pected that erroneous or missing column information woeldhibboth datasets, no data-cleaning (or
normalisation) was performed except for a global conversidowercase.

For both datasets we created a new target colaitation in the form ofyear [1-n] + title[1-n]

+ first author[1-n] and inserted it into a new target table. We then used our rdeihdhe generated
target table and the source columns to extract what it bediew be the translation formula. As ex-
pected, the correct translation formula used to createyththetic target columns was extracted for
both datasets.

As a further test of the method’s resilience to noisy dataftvem compared theitation column
from the DBLP dataset to the source columns from the Citedatset using our method. This is a
difficult problem because both datasets are noisy and uylikenatch exactly for most records. This
increases the uncertainty in extracting a translation tdarbecause of the amount of noise introduced
into the edit distance method.

As a gross means of estimating the amount of overlap betwetindatasets, we counted the
number of common titles (exact match) between both datasbtsabout 2,480. With a source column
sample size of 1%, the method returned the translation flaryear [1-n] + title[1-n] + second
author[1-n] which translated about 378 rows between both tables. Chgdke second author was

not our expected translation géar [1-n] + title[1-n] + first author[1-n], which would have translated
about 714 rows, and we carefully looked at both datasetsadbkish why.

Both translation formulas are “correct” in that we confirntieugh inspection that they translated
the proper row instances between both datasets.

Suprisingly, the translation formula returned by the mdthonverts a block of articles within the
Citeseer dataset that have their first author and secondrdutierted. In this case, we are in the odd
situation of correctly matching a sizeable number of inectly loaded records. Should we remove
these erroneous rows, then the method would return the tgeanslation formula.

A concern is why a translation was returned which occurs &f és many rows as the expected
translation. This can be explained by the relatively low bemof common records coupled with a
sample of 1% of the source columns. By chance the samplinggahi®cating the dominant, but still
rare, translation.

Additionally, a series of experiments were conducted usarglom sets of dictionary words as
column data and a randomly generated translation formasused our method to attempt to recover
the translation formula from a both tables with 10,000 rows.

While we succeeded at identifying relevant columns in al®% of cases for 500 experiments,
we noticed that the creation of the translation formula feirgle column is sometimes incomplete in
high noise environments.

Hence, while the translation may be partially correct, itynhh@ missing a few characters from
the source columns, especially when dealing with variadmgth columns. In our current approach,
we are unable to recover from this because we do not revikinuts and the translation remains
incomplete. We plan to modify Algorithm 5 to recognise suithations and properly correct the
translation formula.

4 Conclusion

Whereas previous approaches took specialised domaiifispeatchers to form the matches and
translations, we present here a generalised algorithm st istring-based matches. This method
attempts to find a translation formula that composes a tagdeinn from the concatenation of an arbi-
trary number of column substrings. We do this without us@ntng or explicit linkage between table
rows and experimental results validate the approach fdistieadata.

Because the method matches complex column translationbealise it is computationally ex-
pensive, it must function within a framework of a schemagndéion system. We make an explicit
assumption that a certain overlap exists between bothetataad that the framework is able to pro-
vide us with both the target column and a set of candidatenwadu Experimentally, we determined
that the size of the overlap is not critical.

We are currently working on the discovery of separator amtstsuch as spaces, slashes and
hyphens within the translation formula as well as the re@agnof space-padded fields. So far, we
have had promising results in extracting the separator leyying the unknown regions of the target
column instances.

Furthermore, we wish to automate the selectiog-gfam and sampling parameters within the
method. Another promising research direction is the idieation of missing information within the
source table and the creation of translation columns to@uipprect record linkage between databases.

10

References

[1] E. Rahmand P. A. Bernstein, “A survey of approaches tomatic schema matchingthe VLDB
Journal, vol. 10, no. 4, pp. 334-350, 2001.

[2] E. Rahm and P. Bernstein, “On matching schemas autoaligticTech. Rep. MSR-TR-2001-17,
Microsoft Research, Redmond, WA, February 2001.

[3] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic seéheratching with cupid,” irvLDB
'01: Proceedings of the 27th International Conference on Very Large Data Bases, pp. 49-58,
Morgan Kaufmann Publishers Inc., 2001.

[4] A. Doan, P. Domingos, and A. Y. Halevy, “Reconciling soles of disparate data sources: a
machine-learning approach,” 8§ GMOD ’'01: Proceedings of the 2001 ACM S GMOD interna-
tional conference on Management of data, pp. 509-520, ACM Press, 2001.

[5] P. Carreira and H. Galhardas, “Execution of data maghier$QIS’04: Proceedings of the 2004
international workshop on Information quality in information systems, (New York, NY, USA),
pp. 2-9, ACM Press, 2004.

[6] G. H. L. Fletcher, “The data mapping problem: Algorittmaind logical characterizations,” in-
ternational Special Workshop on Databases For Next Generation Researchers (SMOD) at ICDE
2005, 2005.

[7]1 D. W. Embley, L. Xu, and Y. Ding, “Automatic direct and iivdct schema mapping: experiences
and lessons learneddGMOD Rec., vol. 33, no. 4, pp. 14-19, 2004.

[8] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingtisiap: discovering complex
semantic matches between database schema&bdaeedings of the 2004 ACM SSGMOD inter-
national conference on Management of data, pp. 383—394, ACM Press, 2004.

[9] N. Koudas, A. Marathe, and D. Srivastava, “Flexiblersgrimatching against large databases in
practice.,” inVLDB (M. A. Nascimento, M. TOzsu, D. Kossmann, R. J. Miller, J. A. Blakeley,
and K. B. Schiefer, eds.), pp. 1078-1086, Morgan Kaufma©@42

[10] E. Ukkonen, “Approximate string-matching with g-graand maximal matchesTheor. Comput.
i, vol. 92, no. 1, pp. 191-211, 1992.

[11] A. E. Monge and C. Elkan, “An efficient domain-indepentlalgorithm for detecting approxi-
mately duplicate database records.,DNMKD, pp. 0—, 1997.

[12] “Dblp citation index,” May 2005. http://dblp.uni-&i.de/xml/.

[13] “Citeseer. ist scientific literature digital libratyylay 2005. http://citeseer.ist.psu.edu/oai.html.

A Algorithms

11

Data: For a set5 of columnsBy, Bs, ..., B, and targetA
Find columnB,;,, most likely part ofA;
Generate a translatianpartially translatingBs;,+ t0 A;
while Transformation 7 has unknowns do
foreach Columns By, in By, Bs, ..., B,, do
Sample columns frorfi; and select values of matching partial translatior’;
Generate a new’ partially translatingBy, to A;
end
Score each’, By;
Insert highest ranked into Transformation
end

Algorithm 1: Overall algorithm

setBy.s: to null;
setscorepest 10 0;

foreach column B, of T} do

count distinct values aB;, asdcount;

hitcount =0;

for j=1to dcount /10 Stepeali®s do
get valuekey from B, ;

localc = countTy whereA like ¢g-grams ofkey;

hitcount + = _ locale
~ length(key) '’
end
HitCount \
scoreBi) = (dcount/lO) ’

if score(Bg)> scorepes; then
‘ scorepest = scoreBy);
Bbest = Bky
end

end

Algorithm 2; Initial column selection using a fixed q gram size

Data: A candidate colummBy,.

Result: Edit distance recipeR.

count distinct values aB;, asdcount;

Recipes = null;

for j=1to dcount/10 Step-L2unt/9%_ dq
dcount/10—1

get valuekey from By, ;

Create se#d from 7> whereA like g-grams ofkey;

foreach candidate in A do

RecipeR = edit-distancéf(ey, candidate) ;

searchR for Recipe matchind? ;

if found then
| increase countoR entry by 1;

else
| create new entry ifR with score 1;

end

end
end

Algorithm 3: Creating an initial set of recipes from a candidate column.

12

Data: Edit distance recipeR.
Result: Partial translation formula®.
foreach Rin R do
create empty” ;
begin region ;
foreach char in R do
if key charsstill in sequencethen
| region continues ;
elseif 1<t char isfromkey then
| region continues ;
elseif region still unknown then
| region continues ;
elseif 1st char unknown then
| region continues ;
else if known region ends on key boundary then
clone region ;
mark cloned region as end-of-string;
link both regions to end df’ chain ;
begin region ;
else
| (un)known region or recipe ends
end
link regions to end of " chain ;

end
searchl for translation matching’ ;

if found then
| increase countdf entryby 1 ;

else
| create new entry iffir with score 1;
end

end

Algorithm 4: Generation of translation formulas from recipes.

13

Data: A set of candidate columri8, a partial translatiofl”
Result: A new translatiori’
Init Tyest;
foreach column B; in B do
R = AlgorithmSix(B;, T);
foreach Rin R do
create empty e ;
begin region ;
foreach char in R do
if key charsstill in sequence then
| region continues ;
elseif 1st char froms part of 7" then
| region continues ;
elseif region still unknown then
| region continues ;
elseif 1st char unknown then
| region continues ;
elseif known region ends on key boundary then
clone region ;
mark cloned region as end-of-string;
link both regions to end df,.,, chain ;
begin region ;
else
| (un)known region or recipe ends
end
link regions to end of’;,.,, chain ;

end
search’ for translation matching,c., ;
if found then

| increase countdl entryby 1 ;
else

| create new entry i with score 1;
end

foreach T;,.., in7 do
| Scorel},.., on formula 2;

end
if Score(Tew) > Score(Thes:) then
| best = dnews
else
end
end
returnTpes:;

end

Algorithm 5: Selecting additional columns for a partial translation.

14

Data: A candidate columiB,,, a candidate translatidi
Result: Edit distance recipeR.
for B, and all columnsinT do
| count distinct relations agcount;
end

for j=1to deount /10 Stepettf30.. do
Initialize SearchPattern;
foreach regionin 7" do

if region is known then
Get value of region column;
Extract substring from column;
Add substring to SearchPattern;
else
| SearchPattern =+ %,
end

end
get valuekey from By, ;
Create se#d from T, whereA like SearchPattern and contaipgrams ofkey;

foreach candidate in A do
Apply SearchPattern mask to edit-distance;

RecipeR = edit-distance{ey, candidate) ;
searchR for Recipe matchind? ;

if found then
| increase count oR entry by 1;

else
| create new entry iR with score 1;

end

end
end

Algorithm 6: Creating edit distance recipes for a new candidate column.

15

